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EXPERIENCE SHARING: ASSISTED HISTORY MATCHING & ENSEMBLE MODELLING

MARIA OVERVIEW

Location 9 = b Coart g
* Norwegian Sea (Mid Norway), Halten Terrasse (RSANDNESSIBEN el I ”
* Water depth: 300 m BRONNGYSUND ansncn :
Description Marlae : e
e Jurassic Garn sandstone reservoir; 35 APl oil

* Surrounded by producing fields (same formation)
* Sub-sea development with two templates (H & G)
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Key dates

* Discovery: 2010
* Appraisal: 2012
* Onstream: 2017
* Phase 2 PDO: 2022
Ownership .
* Wintershall Dea (Operator): 50% TreStOkk Ty”hons
* Petoro: 30% y %ﬁ)m
* Sval Energi: 20%
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EXPERIENCE SHARING: ASSISTED HISTORY MATCHING & ENSEMBLE MODELLING

WHY ENSEMBLE BASED MODELLING?

* Sampling from the entire uncertainty span of each input parameter and
not only one point

* Covers a combination of input parameters

* History matching
* Reduces uncertainty consistently and systematically

Eventually improves the predictive power of the simulation model

Less biased compared to manual history matching

Conflicts in the model are naturally easier recognizable

* Highly multi-disciplinary modelling by nature
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EXPERIENCE SHARING: ASSISTED HISTORY MATCHING & ENSEMBLE MODELLING

ENSEMBLE BASED MODELLING WORKFLOW

Step 1
Generate multiple equiprobable realizations of the
model including all the static and dynamic model
uncertainties

Step 2
History match all the realizations by conditioning the

prior ensemble to the dynamic data

Input parameter X

Reduced uncertainty in input parameters

Posterior ensemble converged towards
observed data

Significant reduction in simulated ranges
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EXPERIENCE SHARING: ASSISTED HISTORY MATCHING & ENSEMBLE MODELLING

Learning 1 Learning 2 Learning 3 Learning 4

Sense checking Ensemble # Scenarios Objective Function No Data

Learning 5 Learning 6 Learning 7

Reality Communication In-Place volume
distribution
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EXPERIENCE SHARING: ASSISTED HISTORY MATCHING & ENSEMBLE MODELLING

LEARNING #1
SENSE CHECKING

Use results for
* Sense checking

* Does it make sense based on experience if a parameter tends to
increase?

* Couldit cover just another uncertain parameter, which was possibly left
out (structural uplift vs. permeability increase, ...)?

* Is the geological concept preserved throughout the history matching

* Extracting sensitivities (indirectly)

* Whatis the impact of the sealing layer on the possible planned
scenarios
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EXPERIENCE SHARING: ASSISTED HISTORY MATCHING & ENSEMBLE MODELLING

LEARNING #2
ENSEMBLE # SCENARIOS

An ensemble is not equal to the range of its

scendrios

* Therange of a predicted outcome can create a
comfort feeling and it should not be forgotten
that the ensemble is build on a certain geological
scenario.

* Whatis the impact of the geological scenario on
the planned development concept?
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EXPERIENCE SHARING: ASSISTED HISTORY MATCHING & ENSEMBLE MODELLING

LEARNING #3
OBJECTIVE FUNCTION

Setting up and cross-check the objective function
* Exclude wrong data points/ outliers (obvious)
Set up the correct tolerances

* Uncertainty in the measurement

* Can give "weight” for a parameter - is that wanted?

* How many data points to include?
* As many as possible/ weekly/ monthly?

* Can greatly affect the match quality

Which parameters to include in objective function?

* Measured bottom hole pressure (if available)
*  Water (production rate, cut, cumulative)?

* The more parameters per well the more weight
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EXPERIENCE SHARING: ASSISTED HISTORY MATCHING & ENSEMBLE MODELLING

LEARNING #4
NO DATA

* |f there is no observed data from a certain
zone/compartement, there will be no uncertainty
reduction.

* How does this influence your planned development
scenario?

Input parameter X

Posterior distribution

Prior distribution
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EXPERIENCE SHARING: ASSISTED HISTORY MATCHING & ENSEMBLE MODELLING

LEARNING #5
REALITY

Ideally: Run ensemble based modelling on all possible geological scenarios
BUT: Not practical due to limited time and resources

Practically/Pragmatically: Investigate several scenarios and run ensemble based modelling on a few scenarios

Define uncertainty in input parameters as «correctly» as possible
Never give the software more freedom than necessary

The software might compensate for one «missing uncertainty» by another «over-represented uncertainty»
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EXPERIENCE SHARING: ASSISTED HISTORY MATCHING & ENSEMBLE MODELLING

LEARNING #6
COMMUNICATION

* Low, Mid, High = P90, P50, P10
e  Sum of P50s # P50 of the sums

* Make sure you know how your output will be used and
communicate the ,boundary” of provided data

* Facility Engineering - Production Engineering - Economics
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EXPERIENCE SHARING: ASSISTED HISTORY MATCHING & ENSEMBLE MODELLING

LEARNING #7/
IN-PLACE VOLUME DISTRIBUTION

Why is in-place distribution not getting larger?

Field STOOIP vs Number of Zones

* Introducing the large uncertainty on petrophysical - P50
1200
properties and dynamic data alone will not necessarily
1000
lead to a wide in-place volume range even in the -
. o T P10 & P90 with cancelling effects
undrained zones/compartments. 5
o . . o
* Structural uncertainties, different contacts or geological &
400 .
models are needed to widen the range “\._ P10 & P90 with statistical
dependencies between zones
o
. , ; > % &% w
* Cancellation effect between multiple zones sampled
. Number of zones
independently
* Introduce dependencies between the zones © Resoptima - Zendesk
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EXPERIENCE SHARING: ASSISTED HISTORY MATCHING & ENSEMBLE MODELLING

SUMMARY & CONCLUSION

* More cases to run; Time-consuming

Crucial to perform proper QC

* Parametrization might be time-consuming; needs
several iterations
* Important to cover all uncertain parameters,
otherwise, the result can become misleading

Based on assumptions (like every model)

No valid assumptions =2 no valid conclusions

Crucial to define uncertainty in the input parameters
“correctly”

Sensitivity analysis: can't assign a certain response to a
certain parameter
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You will always understand the model better using the
entire posterior distribution, not just some point estimate
derived from it
There is a lot of information about the uncertainty in the
entire posterior distribution. We lose this information
when we plug out a single parameter and then perform
calculations with it. This loss of information leads to
overconfidence.

Overfitting - two important principles:
Adding parameters (making the model more complex)
nearly always improves fit of a model.
While more complex models fit the data better, they
often predict the new data worse.
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