

Introduction

- **→** Adding Storage to CO₂-EOR: EOR+
 - Co-exploit CO₂ storage and enhanced oil recovery
 - Utilize captured CO₂ to offset capture cost
 - Three Models

Scenario	Incremental Recovery (%)	Utilization (tCO ₂ /bbl)	
Conventional EOR+	6.5	0.3	
Advanced EOR+	13	0.6	
Maximum Storage EOR+	13	0.9	

Storing CO₂ through Enhanced Oil Recovery

Combining EOR with CO₂ storage (EOR+) for profit

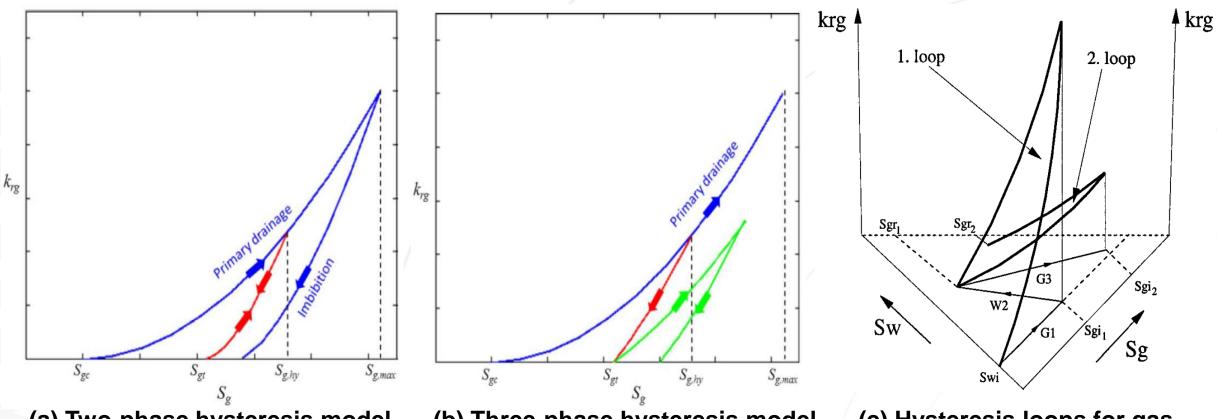
The late consect of the control of the control and the product of the control of

IEA Insights Paper (2015)

Introduction

- ➤ CH₄ in Oil Field
 - CH₄ is by-product of oil extraction
 - CH₄ was flared to atmosphere for decades but recently crackdown on methane from oil and gas industry is initiated
 - Global Warming Potential (GWP) is 28 times that of CO₂
 - Sequestration of CO₂ and CH₄ benefits environment and economics
 - Affects the performance of CCS-EOR
 - ✓ Displacement and sweep efficiency
 - ✓ CO₂ trapping mechanism

Introduction


- Objectives
 - Investigate the effects of CO₂/CH₄ co-injection
 - ✓ Oil Recovery
 - ✓ CO₂ Trapping Mechanism
 - Optimization of the injection strategy
 - ✓ Max. Recovery & Storage
 - √ Max. Recovery
 - ✓ Max. Storage

Methodology

Three-Phase Hysteresis Model for Residual Trapping

(a) Two-phase hysteresis model

(b) Three-phase hysteresis model

(c) Hysteresis loops for gas

(Larsen et al., 1998)

Methodology

- Three-Phase Hysteresis Model for Residual Trapping
 - Gas permeability during drainage process

$$k_{rg}^{drain}(S_g, S_w^I, S_g^{start}) = \left[k_{rg}^{input}(S_g) - k_{rg}^{input}(S_g^{start})\right] \left(\frac{S_{wi}}{S_w^I}\right)^u + k_{rg}^{imb}(S_g^{start})$$

Gas permeability during imbibition process

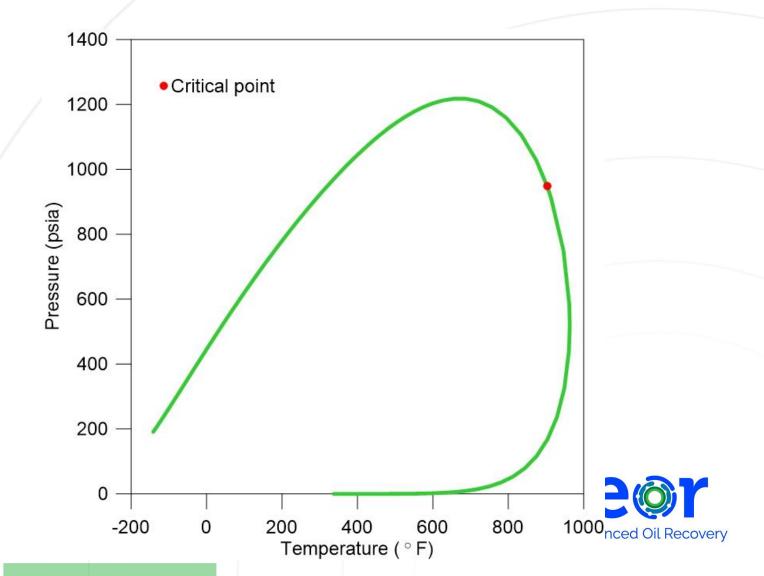
$$k_{rg}^{imb}(S_g) = k_{rg}^{drain}(S_{gf} + S_g^{end})$$

Methodology

Solubility Model for Solubility Trapping

Fugacity

$$f_{i,w} = y_{i,w}H_i$$
 with $i = 1, ..., n_c$


Henry's constant

$$egin{aligned} & \ln H_i^s + rac{1}{RT} \int_{p_{
m H_2O}^s}^p \overline{v}_i dp \ & \ln H_i^s = \ln p_{
m H_2O}^s - D ig(T_{r,
m H_2O}ig)^{-1} + E ig(1 - T_{r,
m H_2O}ig)^{0.355} ig(T_{r,
m H_2O}ig)^{-1} \ & + F {
m exp} ig(1 - T_{r,
m H_2O}ig) ig(T_{r,
m H_2O}ig)^{-0.41} \end{aligned}$$

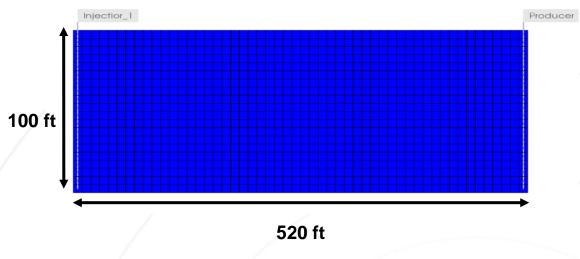
// STAVANGER 2022 ANNUAL EVENT // 21 - 24 Nov

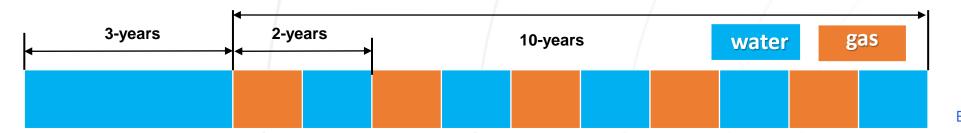
> Fluid Modeling

Components	Mole Fraction
N ₂	0.0207
CO ₂	0.0074
H ₂ S	0.0012
CH₄	0.0749
C ₂ H ₆	0.0422
C ₃ H ₈	0.0785
i-C ₄ H ₁₀	0.0158
C ₄ H ₁₀	0.0497
i-C ₅ H ₁₂	0.0201
C ₅ H ₁₂	0.0258
C ₆₋₉	0.2155
C ₁₀₋₁₇	0.2202
C ₁₈₋₂₇	0.1027
C ₂₈₊	0.1252
Total	1

// STAVANGER 2022 ANNUAL EVENT // 21 - 24 Nov

> Fluid Modeling

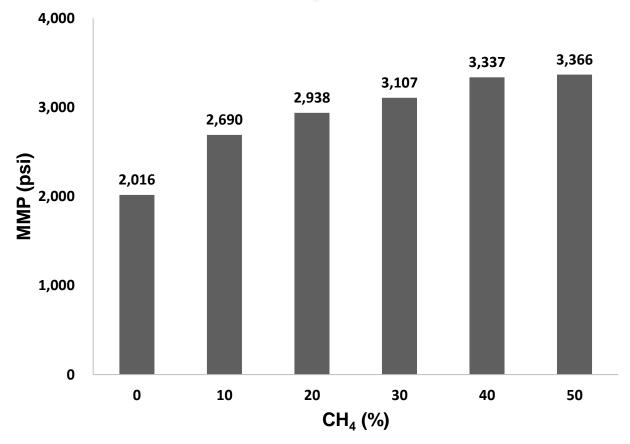

Parameters	Weyburn	Fluid Model	Difference (%)
Saturation Pressure (psi)	713	713	80.0
Oil Density at Saturation Pressure (lb/ft³)	50.3	50.3	0.09
Viscosity at Saturation Pressure (cp)	1.76	1.76	0.0
Formation Volume Factor (ft ³ /scf)	1.12	1.108	1.07
API (∘)	31	34.48	-11.23
MMP with CO ₂ (psi)	2,060	2,016	2.09



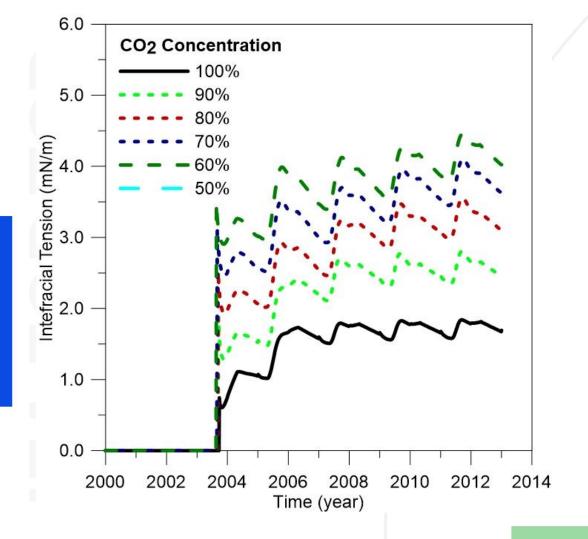
/// STAVANGER 2022 ANNUAL EVENT // 21 - 24 Nov

> Reservoir Modeling

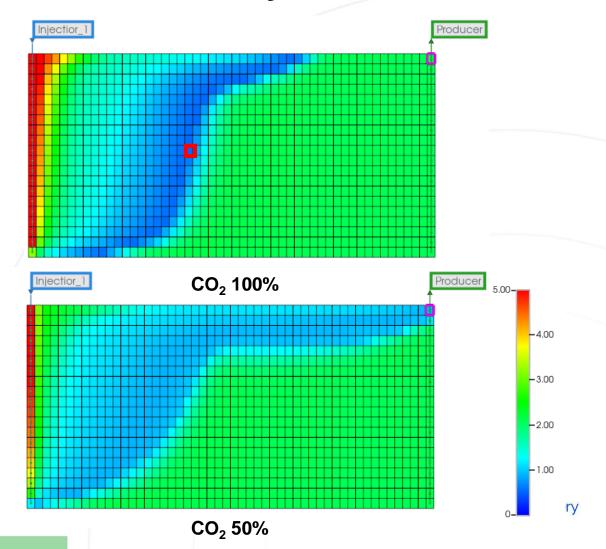
Parameters	Values
Depth (ft)	4,000
Initial reservoir pressure (psi)	4,000
Reservoir temperature (°F)	145
Permeability in I, J, K-direction (md)	50, 50, 5
Porosity	0.3
Initial oil saturation	0.6
Initial water saturation	0.3
Pore volume injected (PV)	2.5



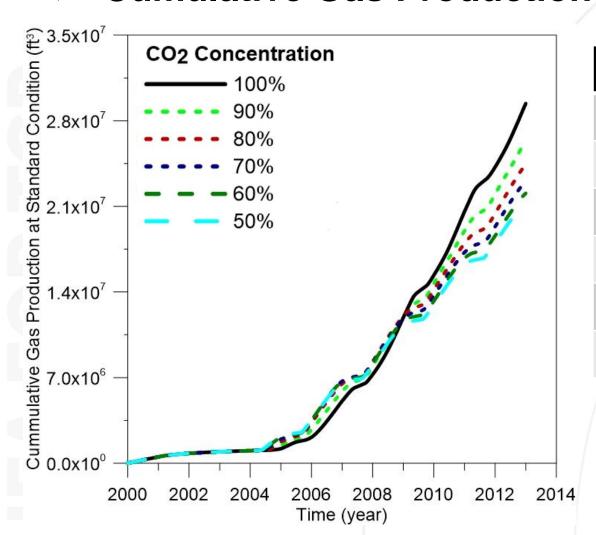
/// STAVANGER 2022 ANNUAL EVENT // 21 - 24 Nov


Minimum Miscibility Pressure (MMP)

Components	MMP (psi)
CO ₂ 100%	2,016
CO ₂ 90% + CH ₄ 10%	2,609
CO ₂ 80% + CH ₄ 20%	2,938
CO ₂ 70% + CH ₄ 30%	3,107
CO ₂ 60% + CH ₄ 40%	3,337
CO ₂ 50% + CH ₄ 50%	3,366



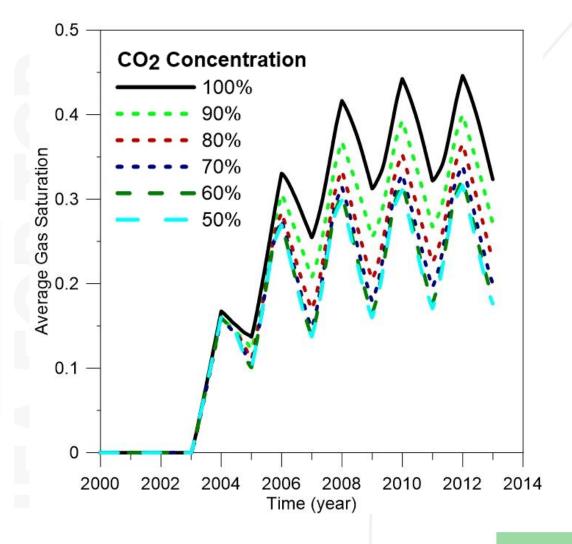
Interfacial Tension (IFT)



> Oil Viscosity

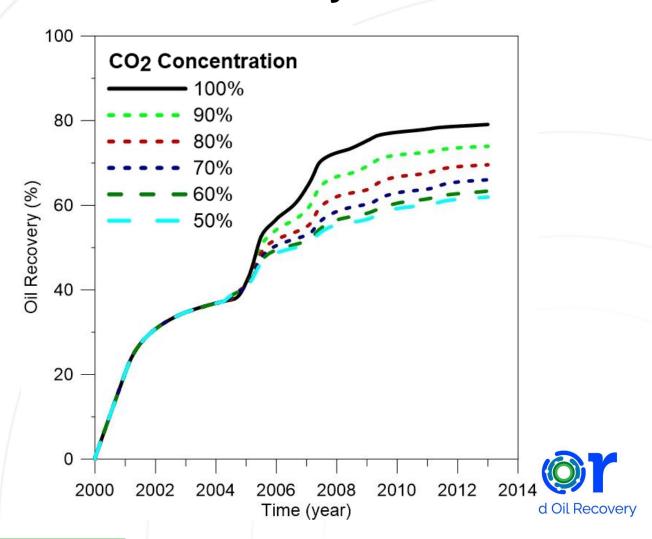
// STAVANGER 2022 ANNUAL EVENT // 21 - 24 Nov

> Cumulative Gas Production

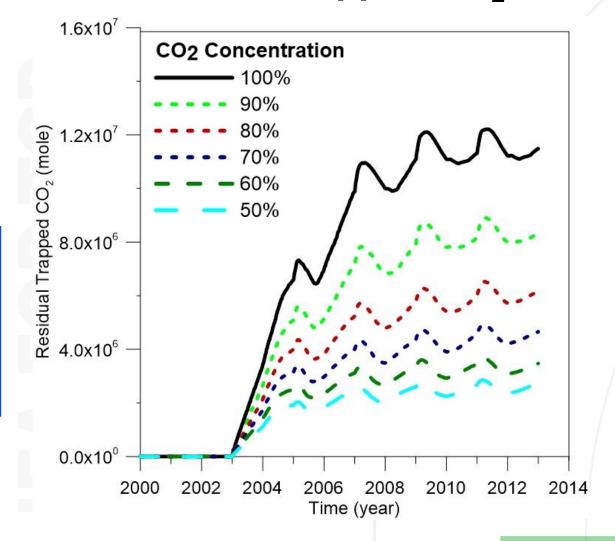


Case	Breakthrough Time
CO ₂ 100%	2005.01.14 (1,840 day)
CO ₂ 90% + CH ₄ 10%	2004.10.11 (1,745 day)
CO ₂ 80% + CH ₄ 20%	2004.08.12 (1,685 day)
CO ₂ 70% + CH ₄ 30%	2004.07.03 (1,645 day)
CO ₂ 60% + CH ₄ 40%	2004.06.01 (1,613 day)
CO ₂ 50% + CH ₄ 50%	2004.05.04 (1,585 day)

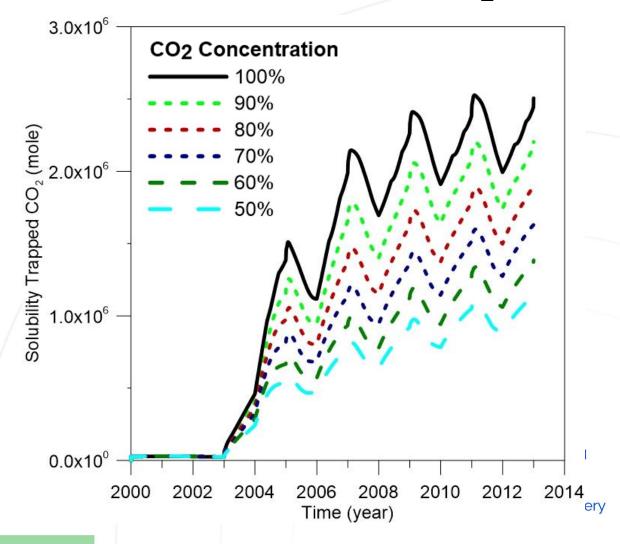
→ Early Breakthrough



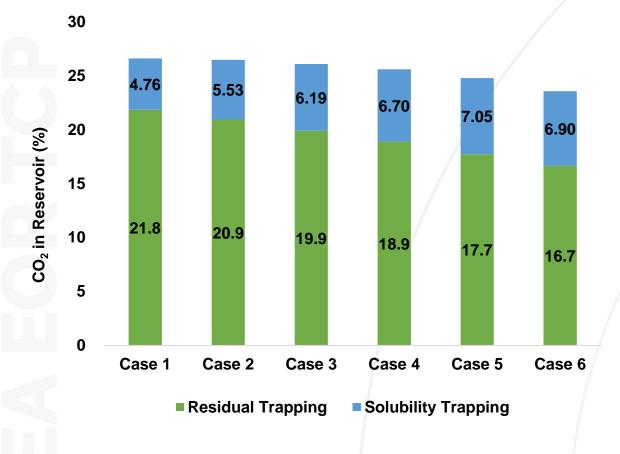
Average Gas Saturation



> Oil Recovery



Residual Trapped CO₂



➤ Solubility Trapped CO₂

Stored CO₂

/// STAVANGER 2022 ANNUAL EVENT // 21 - 24 Nov

GWP of Trapped GHGs

■ CO2 ■ CH4

21 - 24 Nov

Scenario	Scenario Incremental Recovery (%)	
Conventional EOR+	6.5	0.3
Advanced EOR+	13	0.6
Maximum Storage EOR+	13	0.9

Case	Incremental Recovery (%)	Utilization (tCO ₂ /bbl)	GWP of Stored GHG (10 ⁷ mole)
CO ₂ 100%	35.8	0.19	2.17
CO ₂ 90% + CH ₄ 10%	30.7	0.31	2.68
CO ₂ 80% + CH ₄ 20%	26.3	0.42	2.86
CO ₂ 70% + CH ₄ 30%	22.7	0.52	2.98
CO ₂ 60% + CH ₄ 40%	20.0	0.63	3.11
CO ₂ 50% + CH ₄ 50%	18.7	0.72	3.91

Optimization

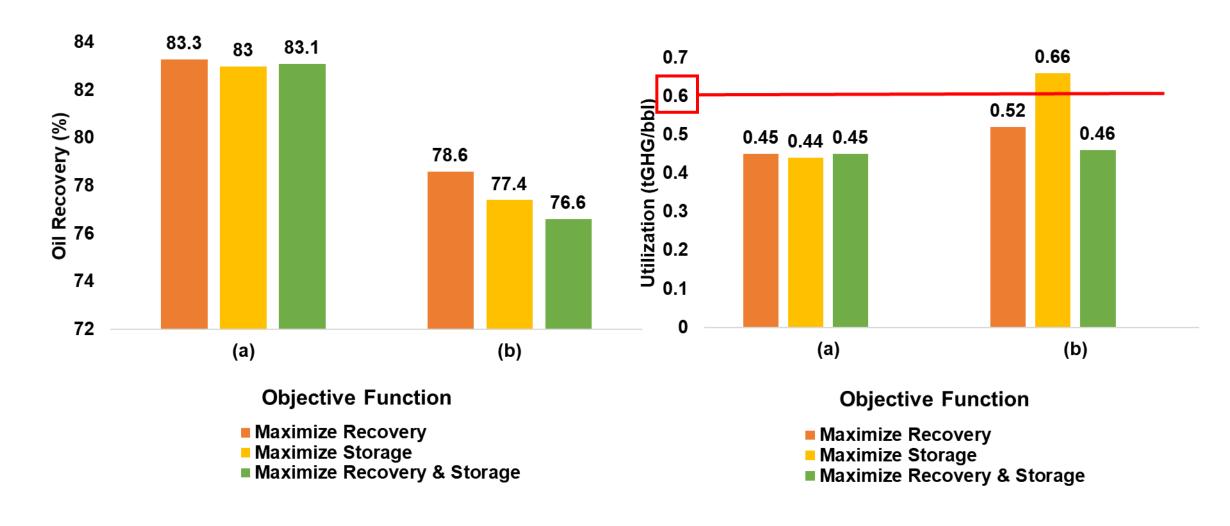
Parametric studies: Injection scenarios

Case	Water Injection Rate at Reservoir Condition (bbl/day)	Cycle Duration (month)	Gas Injection Rate at Reservoir Condition (ft³/day)
-) 00 4000/		3 6	
 a) CO₂ 100% b) CO₂ 90% + CH₄ 10% 	5 – 25	12	50 - 120 (0.6 – 1.4 PV)
		18	
		24	

Object functions

- ✓ Maximize recovery
- ✓ Maximize storage
- ✓ Maximize both recovery & storage

> Optimization for (a) CO₂ 100%


Object Function	Pre-Water Injection Rate at Reservoir Condition (bbl/day)	Water Injection Rate at Reservoir Condition (bbl/day)	Gas Injection Rate at Reservoir Condition (ft³/day)	Water Duration (month)	Gas Duration (month)	Oil Recovery (%)	Stored CO ₂ (10 ⁷ mole)	Utilization (tCO ₂ /bbl)
	5	22	120	3	24	83.3	2.8	0.45
Bookery	5	21	120	6	24	83.3	2.3	0.40
Recovery	5	17	120	3	24	83.0	2.8	0.45
	5	19	120	12	24	83.0	2.7	0.36
	15	25	120	3	18	83.0	2.9	0.44
Storage	21	25	120	3	18	83.1	2.9	0.44
Storage	18	25	120	3	18	82.9	2.9	0.44
	18	25	120	3	18	82.9	2.9	0.44
	21	25	120	3	24	83.1	2.7	0.45
Recovery &	17	20	118	3	24	82.7	2.8	0.45
Storage	22	25	119	24	24	81.8	2.9	0.31
	25	23	120	3	24	82.8	2.7	0.45

> Optimization for (b) CO₂ 90%+CH₄ 10%

Object Function	Pre-Water Injection Rate at Reservoir Condition (bbl/day)	Water Injection Rate at Reservoir Condition (bbl/day)	Gas Injection Rate at Reservoir Condition (ft³/day)	Water Duration (month)	Gas Duration (month)	Oil Recovery (%)	Stored CO ₂ (10 ⁷ mole)	Utilization (tGHG/bbl)
	5	25	120	3	6	78.6	1.7	0.52
Boowery	14	25	120	3	6	78.4	1.7	0.52
Recovery	5	25	120	3	12	78.3	1.7	0.61
	5.8	25	120	6	12	78.2	1.9	0.54
	5.5	5	120	3	24	77.4	2.2	0.66
Storage	5.2	5	120	3	24	77.5	2.2	0.66
Storage	5.4	5	120	3	24	77.3	2.2	0.66
	5.8	5	120	3	24	77.2	2.2	0.66
	7	13	120	24	24	76.6	2.1	0.46
Recovery &	5	25	120	24	24	77.6	2.1	0.46
Storage	7	19	120	24	24	77.3	2.1	0.46
	5	25	120	6	24	78.2	1.9	0.54

Optimization

Conclusion

- ▶ Increasing concentration of CH₄ was found to decrease the oil recovery and carbon storage efficiency.
- Compared to 100% CO₂, addition of 10% CH₄ resulted in a 5.2% reduction in oil recovery.
- As CH₄ fraction increases, the trapped GWPs are increased up to 90%.
- Using the Advanced EOR+ approach, the equivalent net utilization of GHG was calculated.
- Case (b) met the Advanced EOR+ criteria with a net utilization of 0.6 higher.

