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Motivation

As you may know, polymers, in particular HPAM, are being applied in a number of fields
around the world

It is of key importance to understand the effect of polymer rheology on multiphase flow in
porous media.

Recent heavy oil displacement experiments have shown that there are clear differences in
incremental oil recovery for different polymers.

OBSERVATIONS: Significant higher recovery with HPAM compared to Xanthan and
Newtonian fluids at same effective viscosity.

WHY?



Pore Network Single Phase Rheology
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Three different polymer types are considered:

(i) Shear-thinning (Xanthan)
(ii) Newtonian
(iii) Shear-thinning and thickening (HPAM)
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Outline

Motivation

Experimental results comparing HPAM to Xanthan and Newtonian fluids

* SPE165267 (2013) Polymer Flooding of Heavy Oil Under Adverse Mobility Conditions: Levitt, Jouenne,
Bondino, Santanach-Carreras, Bourrel.

* SPE190866 (2018) Viscous Oil Recovery 13/ Polymer Injection; Imfact og: In-Situ Polymer Rheology on Water
Front Stabilization: Vik, Kedir, Kippe, Sandengen, Skauge, Solbakken, Zhu.

Dynamic pore scale model

Dynamic pore scale modeling results

Summary and Conclusion



Experimental Results

SPE165267 (2013) Polymer Flooding of Heavy Oil Under Adverse Mobility
Conditions: Levitt, Jouenne, Bondino, Santanach-Carreras, Bourrel (TOTAL)

50%
 Bentheimer Lab Core ~HPAM; 3 cP (AP7)
40% .
. -+ 50% sugar solution; 5 cP (AP11)
 Tertiary Polymer Flood: — Xanthangum; § cP (AP1S)
« Xanthan injection: SHEAR-THINNING i
* Sucrose injection: NEWTONIAN g
« HPAM injection: SHEAR-THINNING and THICKENING 2
. g 20% Elastic and shear-thinning o usons
* Permeability: ~ 2000 mD =
* Oil viscosity: ~ 2000 cP 10% e ol Kb 1%

. . . . =" Shear-thinning
* Similar polymer viscosity
0%

Why is HPAM giving much higher extra oil recovery? 0 0.5 1 PV 15 2 2.5



Experimental Results

SPE190866 (2018) Viscous Oil Recovery by Polymer Injection; Impact of In-Situ

Polymer Rheology on Water Front Stabilization: Vik, Kedir, Kippe, Sandengen,
Skauge, Solbakken, Zhu.

Bentheimer Slab

Secondary Polymer Flood:
* Water injection: NEWTONIAN
e Xanthan injection: SHEAR-THINNING
* Glycerol injection: NEWTONIAN (viscous water)
* HPAM injection: SHEAR-THINNING and THICKENING

Permeability: ~ 2000 mD
Oil viscosity: ~ 466 cP
Injection rate, Q = 0.05 and 0.3 ml/min
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Figure 3—Bulk rheology for solutions used and compared in the slab flgods.
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Experimental Results

SPE190866 (2018) Viscous Oil Recovery by Polymer Injection; Impact of In-Situ Polymer Rheology on Water Front Stabilization: Vik, Kedir, Kippe,
Sandengen, Skauge, Solbakken, Zhu.

* Large difference in oil mobilization depending on rheology
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Experimental Fluid Distribution

SPE190866 (2018) Viscous Oil Recovery by Polymer Injection; Impact of In-Situ Polymer Rheology on Water Front Stabilization: Vik, B., Kedir, A.,

HPAM

Kippe, V. et al.

Water Xanthan Glycerol

e Unstable displacement
e X-ray images reveal mechanism

* Rheology changes amount of and
distribution of by-passed oil
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Results show better sweep with HPAM
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Dynamic 2-phase Pore Network Model

Dynamic imbibition model based on work by

Li et al. (2017) and extended to include EOR processes, especially
polymer flooding

(Zamani, Salmo, Sorbie, Skauge (2019))

Dynamic = non steady state modelling of IMBIBITION

Includes both piston-like and film flow/snap-off pore scale
processes

BOTH viscous and capillary forces

=» Important since must change the balance of viscous/capillary
forces and hence ....

=>» Have the capability for microscopic diversion to emerge
(if it happens)

Li, J., McDougall, S. R., Sorbie, K. S. (2017). Dynamic pore-scale network model (PNM) of water
imbibition in porous media. Advances in Water Resources.

Zamani, Salmo, Sorbie, Skauge. Numerical Study of Polymer Flow in Porous Media using Dynamic
Pore Network Modelling.
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Dynamic 2-phase Pore Network Model

Based on single pore event of filling bonds in the pore network

Simulation can give insight into matters such as finger density

(number of fingers)
Parameter

Coordination number
Pore size distribution model
Minimum inscribed radius
Maximum inscribed radius
Permeability

Distortion factor

Average pore length

Pore half angles
Wettability

Water/oil contact angle
Interfacial tension

Injection rate
Capillary No. (waterflood)

Oil viscosity
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Effective viscosity (cP)

Pore Network Single Phase Rheology

12
10 ' . .
' Three different polymer types are considered:
. ! (i) Shear-thinning
: (ii) Newtonian
5 i (iii) Shear-thinning and thickening
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! The apparent viscosity is calculated:
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Single Phase In-Situ Viscosity

[HEN
N

12
10 10
s 8 DK
> >
£ 6 £ 6
S 4 S 4
2 2
o GID CHOEEEEEEEEEE——
0 0
1,00E-09 1,00E-07 1,00E-05 1,00E-03 1,00E-09
Velocity (m/s
y (m/s) 1
e \Water 10
EG, 8
2
2 6 PR ————
3 4
g
2
0
1,00E-09 1,00E-07 1,00E-05 1,00E-03

Velocity (m/s)

e Newtonian

1,00E-07  1,00E-05
Velocity (m/s)

@ Shear-thinning

1,00E-03

Viscosity (cP)

o N B~ OO 0

12

[Eny
o

1,

o

OE-09  1,00E-07  1,00E-05
Velocity (m/s)

Shear-thinning and thickening

1,00E-03

13



Oil Recovery and Pressure
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Fluid Distribution
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Xanthan Glycerol
Fluid distribution (oil and water) after 0.5 PV of injected fluid.

Xanthan Glycerol
Fluid distribution (oil and water) after 1.0 PV of injected fluid.




In-Situ Velocity and Viscosity
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Two Phase In-Situ Viscosity vs. Radius
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Two Phase In-Situ Viscosity vs. Velocity
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Pore Occupancy — 50% filling criteria
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Bulk and Snap-Off Displacement
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® Invaded by water

= With bulk displacement

® Snap off
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QOil Recovery Profiles for Diofferent Model Sizes
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Summary and Conclusions 1

* Polymer solution increase oil recovery compared to water flooding at
adverse mobility.

* Combined shear-thinning and thickening polymer (HPAM like)
improves the performance more than Newtonian (glycerol) and
purely shear-thinning polymer (xanthan).

* This is in exact qualitative agreement with the correct experimental
observations in order of oil recovery and that there were significant
differences between all the cases.
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Summary and Conclusions 2

* The pore network model shows that shear-thinning polymer
experience higher flow velocity, thus lower viscosity which
approaches water viscosity at higher flow rates. A more severe and
inefficient finger pattern are observed for shear-thinning polymer
(xanthan), compared to combined shear-thinning and thickening,
which is very consistent with experimental observations.

* Examining the pore scale occupancies, it is evident that the best
performing shear-thinning and thickening (HPAM like) case causes
more injected phase fluid diversion at the local scale, displacing more
oil from the intermediate sized pores.
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