

Open hole stability in chalk – A case study on the Radial Jet Drilling (RJD) technology

Maiya Medetbekova PhD in Geomechanics Centre for Oil and Gas - DTU

On RJD project board

Saeed Salimzadeh DHRTC/CSIRO

Hamid Nick

Helle Christensen GEO

Center for Olie og Gas - DTU

The Danish Hydrocarbon Research and Technology Centre

Novel Productivity Enhancement Concept for a **Su**stainable Utilization of a Geothermal **Re**source

Reza Hajiabadi

DHRTC

Maiya Medetbekova DHRTC

Bertold Plischke

Alessandro Brovelli

ISAMGEO Italia

GFZ Helmholtz-Zentrum POTS DAM

nordsø<mark>fonden</mark>

Richard Bakker

TU Delft

DHRTC

Outline

✓ Radial Jet Drilling Technology

✓Motivation

- ✓ Research questions
- ✓ Methodology/Results

Reservoir stimulation methods

fracturing

Carbonates:

- Matrix acidizing is preferred in high permeable and damaged formations
- Due to fast consumption of the acid, matrix acidizing is challenging
- Fracturing is preferred if permeability is less than 10 mD
- Challenges with fracturing

 High cost
 Hard to control
 Induce seismic activities
 Environmental issues
 (1-1.5k gallons of fracturing fluid per feet)

DTU

Why Radial Jet Drilling technique?

 $\checkmark Reduced stimulation cost and time$

✓ Controlled stimulation with reduced environmental impact

- o 1 gallon of jet drilling fluid per feet
- o No risk of induced seismicity

✓ The possibility of using in existing wells
 ○ Both open and cased wells

✓ Extended penetration depth– up to 100 m

✓RJD laterals – in 16 direction

TNO report, Peters et al., 2015

DTU

÷

Motivation

Chalk:

- ➢Porosity (15-45%)
- Grain size 0.3-3 micron, pore throat size 0.1-1 micron
- ≻Low permeability (1-3 mD)
- Mechanically weak due to little or absence of cementation
- Complex mechanical behaviour (shear failure, pore collapse, tensile failure, rate dependency, reactive to acid)

Strand et al., 2017. Wettability of chalk: impact of silica, clay content and mechanical properties. Petroleum Geoscience, 13, 69-80.

Schovsbo et al., 2018. Oil production monitoring and optimization from produced water analytics; a case study from the Halfdan chalk oil field, Danish North Sea.

Motivation - Halfdan chalk field

Horizontal wells

Secondary recovery

Tor formation (primary reservoir)

• Low and high porosity intervals (15-37%)

Low permeability (0.5-2 mD)

formations at greater depth

DTU

Motivation - Gorm chalk field

Vertical wells Primary recovery **Ekofisk & Tor formation**

- o Porosity (23-43%)
- Low permeability (0.15-5 mD) Ο

RJD can be used to access unswept oil in vertical wells

Field applications of RJD worldwide

DTU

Research questions

- Is RJD technique viable in the chalk reservoirs?
- Does jetting with a high-pressure fluid have an impact on the chalk's rock mechanics properties around the hole?
- How stable is the jet drilled radials in the chalk reservoirs?

Methodology

Methodology

Jet Drilling Experiment

> Effect of controlling parameters such as jet drilling ambience, jet fluid and nozzle type

Rock Mechanics Testing

Standard rock mechanics testing

Single lateral hole testing

Numerical Modelling

Back analysis of material properties

Wellbore stability modelling

Jet Drilling in Chalk

Outcrop chalk

- Burial depth: 300-900 m 0
- Soft, homogeneous (about 88% calcite) Ο

Stiff, heterogeneous Ο

0

Burial depth: up to 2000 m

Mean effective stress $(p') = \frac{\sigma'_1 + 2\sigma'_2}{\sigma}$

Ο

0

 $\downarrow \sigma_1$

 $\overline{\sigma_2}$

Jet Drilling Experiment

DTU

TUDelft

2 cm

Acid, elevated temperature

direction

Acid, max stress

- Water & acid efficient Ο
- Acid creates larger surface
- Jet drilling efficiency increases with temperature increase
- Jet drilling efficiency increases with Ο stress confinement

Static nozzle (mm scale)

- 4 forward and 5 backward outlets (d=0.5 mm)
- q=15-20 l/min (48.3-69 MPa) -> • v=141-189 m/s

 $\sigma_z = 17 MPa$

 $\sigma_v = 5 MPa$

Welton outcrop chalk

Acid, ambient temperature

- Acid more efficient
- Static nozzle creates larger surface
- Round hole is more stable, but ROP is slower

Rotating nozzle (mm scale)

- 3 forward and 6 backward outlets (d=1 mm)
- q=15-20 l/min (48.3-69 MPa)
 -> v=29-39 m/s

First estimate for jettability

- E specific energy (J/m³)
- P-power transmitted to the rock (N m/min)
- A hole cross section area (m²)
- $P = 0.0223 a p^{1.5}$

 $E = \frac{P}{AR}$

- R rate of penetration (m/min)
- a nozzle cross-section area (m²)
- *p* pressure drop across the nozzle (Pa)

Jet drilling efficiency:

- ✓ Threshold pressure (velocity) lower limit of force needed to cause erosion
- ✓ Grain geometry, permeability, jet diameter

Jet breaking mechanisms:

- ✓ Tensile & shear failure
- ✓ Compression & shear forces
- ✓ Hydraulic lifting

Evaluation on the Jet Drilling impact

Evaluation on the damaged area due to jet drilling

Weakening of chalk mechanics properties

- ✓ weakening is seen in acid jet drilled chalk with stress confinement
- weakening within radius of about 4 cm near the hole

Surface of jet drilled Austin chalk

Acid

o irregular, etched surface

 $\circ \times 100 \ \mu m$ fissures

Water

- $\circ~$ Well polished surface
- $\circ \times 10 \ \mu m$ fissures

hole the adjacent to

3 cm

3 µm

Chalk matrix

Austin chalk (acid, confined)

Adjacent to the hole

- o smooth & irregularly shaped calcite grains
- µm scale perforations on 0 the surface of microsparites

1 cm away

less abundant µm scale 0 perforations on the surface of microsparites

4 cm away

similar to intact chalk 0

Near wellbore stability analysis in chalk

DTU

Peak strength

Shear failure – low effective mean stress, but high deviatoric stress (grain rotation/sliding) Pore collapse – high effective mean stress, but low deviatoric stress (compaction/irreversible pore volume reduction)

Creep strain – continued deformation under constant stress

ISAMGE0 GmbH **ISAMGEO** Italia

Isamgeo chalk model - Shear Failure Surface

- Mohr-Coloumb model (with intermediate principal stress σ₂ impact)
- Prior to reaching the peak-strength: friction hardening
- Post peak: friction and cohesion softening
- Non-associated flow rule (control of dilatancy)
- Cosserat approach allows for shear strain localization
 - ✓ rotational degrees of freedom and internal length parameter
- Shear failure has priority over pore collapse

ISAMGE0 GmbH

ISAMGEO Italia

Isamgeo chalk model – Cap surface

Modified Cam-Clay model

DTU

- Yield surface expands by hardening, developing plastic irreversible strain
- Size of the ellipse depends also on the volumetric plastic strain rate
- Rate dependency of pore collapse is based on De Waal's model

$$p_{cc} = p_{c0} \left(\frac{\dot{\varepsilon}_{v}^{pl}}{\dot{\varepsilon}_{0}} \right)^{b}$$

$$\Delta p_{c0} = (h_0 - h_n \Phi) \,\Delta \varepsilon_{vol}^{pl}$$

- h

ISAMGE0 GmbH

ISAMGEO Italia

Workflow for near wellbore stability

DTU

Standard rock-mechanics testing

Test program to establish a chalk model:
Two stage triaxial compression test
Uniaxial strain (compaction) test
Triaxial compaction (hydrostatic) test

All the tests included constant stress phase (creep) of at least about one day

DTU

Back analysis in Single Element Simulator

3D modelling of triaxial test

DTU

₩

Design of Single Lateral Hole (SLH) test

DTU

₩

DTU Ħ

test

Design of SLH test: 2D & 3D modelling

Single Lateral Hole test

The SLH test is carried out in two ways:

1. <u>loading phase</u>, in which the specimen loaded with a fixed stress ratio of 0.4 and followed by a creep at drained condition;

2. <u>flowing phase</u>, after the loading and creep phase, the fluid flow from the end boundaries of the specimen to the borehole was allowed

3D modelling of

triaxial test

5 March 2020 Centre for Oil and Gas - DTU

Standard rock mechanics

test

Back analysis of

standard tests

SLH test with flow (Gorm reservoir chalk)

Flow test with drawdown pressure of 2.5 MPa within 5 hours and 1 hour did not cause instability associated with fines production

UJJ

DTU

Back analysis of SLH test in 2D & 3D

Wellbore Stability – Gorm chalk field

DTU

 Ξ

Borehole Geometry

DTU

₩

- At the wall porosity increase due to dilatancy
- At some distance away from the hole porosity decrease due to compaction

Standard rock mechanics Back analysis of standard tests 3D modelling of triaxial test Design of single hole test Single hole	
---	--

DTU

- Pronounced shear breakout
- o Extension and compaction zones getting closer affected area increasing

Standard rock mechanics Back analysis of standard tests	3D modelling of triaxial test	Design of single hole Single hole test	Back analysis of single hole test	Wellbore stability analysis	
---	-------------------------------	--	-----------------------------------	--------------------------------	--

DTU

Stability analysis of RJD lateral with a wing geometry

Wings nearly closed Ο after 6 hours of drilling

• Wings nearly closed after <4 hours of drilling

Plastic strain concentrated at the tips of the wings

Conclusions

Conclusion (1)

- Mechanically Radial Jet Drilling is viable in chalk
- Acid jet drilling is faster than water jet, and creates larger surface area
- o Jet drilling in confined stress condition provides better penetration
- Jet drilling in both minimum and maximum stress directions is possible, and it is stable
- Jet drilled surface of chalk is different depending on fluid and ambient of jetting conditions
- Weakening of strength and stiffness properties related to the stress concentration around the hole and acid effect

Conclusion and Future work (2)

- SLH test enabled to simulate the development of the breakout damage corresponding to field condition
- Studies on fines production under higher drawdown pressure and stress condition is recommended
- An accurate prediction of the chalk behaviour surrounding the borehole can be done utilizing model with rate-dependency of the pore collapse strength and softening effect of the shear failure yield surface using Cosserat continuum
- Up to a year, the lateral borehole in the Gorm field can be stable, while in the long run, instability associated with fines production may be observed

Thank you for your attention!