Ringhorne ESP experiences -in oil producing wells

Presentert av Gard Munkerud

Why ESPs?

- 29 active producers on Balder & Ringhorne
- Ringhorne has no gas compression
- Balder compression capacity:
 1.2 MSm3/d
- Jotun compression capacity:2.0 MSm3/d
- 80% of compression capacity used for gas lift -> Main limitation
- ESP chosen as alternative technology for artificial lift

Overview

- Ringhorne currently has 5 ESPs in operation with 2 spare VSDs available
 - All wells are conventional oil producers with various water cuts
- Baker Hughes as pump supplier, with dual pod ESP system and GLV
 - Two ESPs installed in each well one running at a time. GLV as back-up
 - Pump depths around 1400 mTVD / 2500 mMD
- **C-09**: Former gas lift producer. Recompleted with ESP in June 2020
 - VC155 pump. 15 kbd liquid rate
- C-11: Drilled & completed with ESP in April 2021
 - VC100 pump. 10 kbd liquid rate
- C-17: Former gas lift producer. Recompleted with ESP in July 2023
 - VC155 pump. 15 kbd liquid rate
- C-23: Drilled & completed with ESP in Nov 2021
 - VC100 pump. 10 kbd liquid rate
- C-24: Drilled & completed with ESP in May 2023
 - VC100 pump w/ gas handler. 10 kbd liquid rate

What is an ESP?

ESP pump stage: Impeller & Diffuser

- One pump stage: Impeller and diffuser
 - The impeller rotates while the diffuser remains stationary
- The impeller pushes liquid towards the outer rim of the chamber
- The diffuser has large cross-sectional flow area to build pressure
- An ESP typically consists of 50-70 stages (i.e. little "head" is built per stage)
- Ringhorne ESPs build around 75 bar head

Two different kinds of impeller and diffuser pair

One pump stage. The shaft rotates the impellers

ESP: Power Cable

- One three-phase power cable connected to each pump
- The cable run from the junction box through the wellhead and to the ESP sitting at approx. 2 500 mMD
 - Cable is delivered on 9000' drum limiting the ESP setting depth
- Communication-on-Power provide ESP downhole monitoring and is filtered out from the power cable in the VSD by the Zenith receiver

Zenith receiver (signal interpreter)

ESP: Motor

- Two kinds of ESP-motors exist with induction motor being the most common
 - Induction motor uses magnetic wire with no permanent magnetic field. Used on Ringhorne
 - Permanent magnet motor uses four poles and a permanent magnet in the rotor
- The rotor is connected to the shaft which in turn moves the impellers in the pump stage
- The motor is cooled by well fluid. At Ringhorne reservoir temp is 76°C while motor temp is 100°C

ESP Hook-up

VSD container

Turbines

VSD cabinet

Wellhead

penetrator

ESP Uptime & Production Efficiency

- Uptime around 90% for all ESP wells incl. scheduled & unscheduled downtime (5-10% higher than gas lifted wells)
- No ESP failures yet still operating primary pump in all wells

ESP vs gas lift: Workovers C-09 and C-17

C-09 - Producer from 2003 (ESP June 2020)

After ESP installation:

- ✓ Liquid rate increased to ESP design rate
- ✓ Water cut on trend 80%
- ✓ Gas lift free'd up generates additional uplift on other wells.
- ✓ Oil rate increased accordingly by 61 %

C-17 - Producer from 2006 (ESP June 2023)

After ESP installation:

- ✓ Liquid rate increased to ESP design rate
- ✓ Water cut around 90 %
- ✓ Gas lift free'd up generates additional uplift on other wells
- ✓ Oil rate increased accordingly by 150 %

Operational Challenges

Date	Well	Trip description			
Jun 2020	C-09	Gas filled tubing at start-up due to local gas injection			
Oct 2020	C-09	Trip due to topside ground fault			
Jul 2020	C-09	Trip due to low backpressure in CIV. Also experienced in C-11. Requires flushing of chemical lines			
Dec 2021	C-23	Trip due to faulty high voltage switch			
Jun 2023	C-23	Trip due to topside ground fault			
Jul 2023	C-17	No connection with Zenith receiver unit topside. Swapped receiver unit.			
Jul 2023	C-17	Trip due to VSD overload			
Aug 2023	-	Water precipitation inside VSD container due to cooling system fault			
Mar/Apr 2024	C-24	Software incorrectly interprets gas as wellstream - only running gas handler			

2018	June 2020	April 2021	September 2021	May 2023	July 2023	
ESP Project	l⁵t ESP (big) C-09 workover	2 nd ESP (small) C-11 new well	3 rd ESP (small) C-23 new well	4 th ESP (small) C-24 new well	5 th ESP (big) C-17 workover	

Some reflections...

Skill?

Luck?

- Incentive contracts with Baker Hughes as «One stop shop». Continuous operational support
- Close collaboration with subcontractors such as ABB (VSD provider) and Honeywell (software)
- The system is very protective, and probably *too* protective (designed to be user independent)
 - Little input from control room generally only pump frequency and chemical injection rates
- … Ringhorne ESP strategy going forward

