

🖮 vår energi

Enhancing Reservoir Decision Quality through Rock Typing and SCAL Modeling

Muhammad Nur Ali Akbar, Prores

Ardian Pradhana Putra, Vår Energi

FORCE

Decision Quality Seminar: Better Decision-Making in the Age of Al: Opportunities and Challenges in Subsurface

Stavanger, 11 June 2025

SCAL – Why is it Important?

SCAL : Special Core Analysis

Coreflood simulation is needed!

- Quality control your SCAL experiment(s)
 - Uncover invalid experiments
 - Improve interpretation of k_r and P_c
- Standardize how you analyze your SCAL experiment(s)
- Find reliable relative permeability and capillary pressure information for a core/well/field
 - Make recommendations for the flow properties for field applications
- Reduce uncertainty in experiment and output
 - Assess accuracy in k_r/P_c
 - Find trends in output data
- Planning for experimental design
 - Map uncertainties
 - Perform sensitivity of experimental setup

Just simple fitting from SCAL Lab. measurement!

Full-Field History Matching

Full-Field History Matching

After SCAL QC/QA Core-Flood Simulation

- Assess the uncertainty range of Special Core Analysis (SCAL) data and its effect on oil production forecasting.
- Investigate the significance of rock typing and SCAL modeling in enhancing the understanding of static and dynamic saturation distributions, thereby reducing uncertainty in production forecasts.
- Predict absolute and relative permeabilities across different rock types and saturation numbers (SATNUM).

Rock Typing for Saturation Modeling

"Reservoir rock typing is a process of analyzing and integrating geological and petrophysical data to characterize a reservoir and <u>dividing it into groups</u>, each of which has certain relations among rock properties and the <u>same dynamic</u> <u>rock properties</u> needed for estimating the initial hydrocarbon in place and forecasting the reservoir performance"

Modified after Ebanks, W.J., Jr.; Scheiling, M.H.; Atkinson, C.D. *Flow Units for Reservoir Characterization*; Morton-Thompson, D., Ed.; Development Geology Reference Manual; AAPG: Tulsa, OK, USA, 1992.

Fluid saturation distribution based on capillary pressure is strongly dependent on rock properties. Rock typing is the key for better saturation modeling.

Newly Developed PGS Rock Typing

Rock Typing Comparison

- PGS has better consistency in terms of grouping capillary pressure for saturation height models than other rock typing methods.
- PGS shows better permeability Prediction in both sandstone and carbonate rocks than HFU.
- Effective to identify active micro-fractures (dual porosity and permeability effects) and any diagenetic process.
- Tested in various case studies in petrophysics, 3D static and dynamic modelling.

Hakiki and Akbar., 2024 (On the pore geometry and structure rock typing) - ACS Omega

SCAL Modeling Overview

- SCAL Modeling was built based on a large dataset and consistent with the wettability physics.
- The primary goal is to generate a range of uncertainty in relative permeability that aligns with the wettability concept for each specific saturation region.
- SCAL modeling predicts relative permeability curves in each rock type by leveraging analogous data.
- This study introduces a novel solution by integrating Corey SCAL modeling with rock typing.

Ebeltoft, E. et al., *Parameter Based SCAL - Analysing Relative Permeability For Full Field Application*, SCA2014-080, in *International Symposium of the Society of Core Analysts*. 2014. Avignon, France.

SCAL Trend Modelling Exp. With Analogue

Case Study Overviews

Observation:

Residual oil has been identified below the present-day Free Water Level (FWL).

Challenges:

- How to model it?
- does this affect the uncertainty in Hydrocarbon (HC) in-place volumes and reserves estimation?

Proposed Solution:

- Integrate SCAL (Special Core Analysis) studies and rock typing to enhance the reservoir saturation model.
- Implement a streamline-based workflow to establish a robust coreto-field solution.

Case Study Workflow

Rock Typing Results

(a_o) Porosity vs. Permeability

(a₁) Por. vs. Perm. – After RT

Kr after SCAL modeling and PGS Rock Typing

Corey Parameters

Swi, Sorw, Kr-end, no, nw

Establish new Kr from SCAL model In each rock type

SCAL Modeling Results

- ⑧ 〇 口 荘

Sendra

* ⑧ 〇 日 荘

0.7

0.7

Parameterized Corey Kr are then plotted on the SCAL modeling curve, plotted against Swi in each parameter.

Anchor oil-water

Akbar, M.N.A., Putra, A., and Reppert, M.G., 2024, A Versatile Workflow of Pore Geometry-Structure Rock Typing and Corey Parameter-Based Relative Permeability Trend Modeling, Paper SCA2024-1026 presented at the Society of Core Analysts, Fredericton, NB, Canada, 25-30 August.

Paleo-Oil Conceptual Models

Overestimation with drainage Pc in the transition zone with present-FWL

Figure 1.2 Capillary pressure curves – clean state

Water Saturation Model Workflow

Each rock type has its own water saturation functions

Comparison of Different Sw Model

Previous Sw Model based on Drainage Pc (No Paleo Oil Zone)

New Sw model based on Drainage + Imbibition (Paleo Oil Zone) by Integrating RT, SHF, and SDF

Difference in Recovery Factor

Reducing Uncertainty with Rock Typing

Uncertainty Analysis with Direct Kr Input

Kr Data from experiments

Kr after SCAL modeling and PGS Rock Typing

Unlocking Opportunity to Enhance Decision Quality

Sensitivity Study using Production Technology to Improve Injectivity

RF of New Sw Model with Paleo Oil Zone is improved by 7-11% with Fishbones

Conclusion

- A robust SCAL database, integrated with well logs and other data, is essential for consistent and reliable reservoir simulation to support confident decision-making
- Implementing workflows like PGS rock typing with Corey-based SCAL modeling helps in resolving complex challenges, including paleo oil zone characterization
- SCAL modeling is important in quantifying subsurface uncertainty and uncovering opportunities to optimize field development strategies

