

The Atlas was launched by the Norwegian Minister for Petroleum and Energy May 20th 2014

Outline

About storage of CO2

About utilization of CO2

- About CO2 intensive industries
- About CO2 transportation

About regulation and incentives

www.npd.no

Objectives and requirements

- \triangleright Find the safe and effective areas for storage of CO₂
- > No interference with the petroleum activity
- Build on the accumulated knowledge from the Norwegian petroleum activity
- \triangleright Build on the experience we have with CO₂ storage
- Mapping and volume calculations should be verifiable
- The work will define relevant storage areas and estimated storage capacities
- The evaluation will form the basis for any terms and conditions set for a development of a storage site offshore Norway

Norwegian CCS experience

20 years with offshore CO₂ storage

Conditions, sites and leakage points for storage of CO₂

Type of storage sites

- Saline aquiferes
- Water- filled structures (dry-drilled)
- Abandoned hydrocarbon fields
- Producing fields (EOR)

Potential leakage risks

- Faults
- Seal
- Old wells
- Injection wells

Characterization and Maturation of potential CO₂ storage sites

CHARACTERIZATION OF AQUIFERS AND STRUCTURES

	Criteria	Definitio	ns, comments		
Reservoir quality	Capacity, communicating volu	umes 3	Large calculated volume, dominant high scores in checklist		
. ,	, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	2	Medium - low estimated volume, or low score in some factors		
		1	Dominant low values, or at least one score close to unacceptable		
	Injectivity	3	High value for permeability * thickness (k*h)		
		2	Medium k*h		
		1	Low k*h		
Sealing quality	Seal	3	Good sealing shale, dominant high scores in checklist		
		2	At least one sealing layer with acceptable properties		
		1	Sealing layer with uncertain properties, low scores in checklist		
	Fracture of seal	3	Dominant high scores in checklist		
		2	Insignificant fractures (natural / wells)		
		1	Low scores in checklist		
Other leak risk	Wells	3	No previous drilling in the reservoir / safe plugging of wells		
		2	Wells penetrating seal, no leakage documented		
		1	Possible leaking wells / needs evaluation		
Data coverage	Good data coverage	Limited data coverage	Poor data coverage		
Other factors: How easy / difficult to prepa	re for monitoring and intervention. The need	d for pressure relief. Possible sup	port for EOR projects. Potential for conflicts with future petroleum activity.		

Data coverage

Good : 3D seismic, wells through the actual aquifer/structure

Limited : 2D seismic, 3D seismic in some areas, wells through

- equivalent geological formations
- Poor : 2D seismic or sparse data

Geological formations and saline aquifers

		Age		Formations & Groups		Evaluated Aquifers		
3	e	Pilocene	Placenzian Zanciean	Utsira	a Em			
3 6 9 11 13 1 17 2 2 4 6 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Neogene	Miocene	Messinian Tortonian Serravailian Langhian Burdigalian	Ve Mb.		Utsira	ira and Skade Formations	
17 19	~		Aquitanian	SKad	e FM.			
22		Oligocene	Chattian					
28			Rupellan					
33 35	ne		Priabonian Bartonian	Grid	Fm.			
37 39	ge	_	Lutetian	dia mi.				
44	Paleogene	Eocene	Concident					
48	Ра		Ypresian	Frigg	Fm.	Frigg Field Abandoned Gas Field		
53 55			Thanetian	Balder	r Fm. Fiskebank Fm.		Fiskebank Fm.	
57 59		Paleocene	Selandian Danian		Ekofisk Fm.			
64 64			Maastrichtian		Tor Fm.			
68 70								
73 75			Campanian					
77 79		Late	Contractor.		Hod Fm.			
82			Santonian Coniacian					
88			Turonian					
93	S		Cenomanian					
97. 99	eol							
102	tac		Albian					
108	Cretaceous							
112 115	0		Aptian					
118		Early						
122 125			Barremian					
128			Hauterivian					
132 135			Valanginian					
138			Berriasian					
142 145			Tithonian			Charac	Desia Isanaia Ma	
148		Late	Kimmeridgian		Boknfjord Fm.	Stord Basin Jurassic Model Stord Basin Mounds *		
152 155			Oxfordian	Ula Secreterd Em				
158			Callovian	Sognefjord Fm. Fensfjord Fm.	Hugin Fm.	Sognefjord I	Jeita East Hugin East	
162 165	Sic	Middle	Bathonian	Krossfjord Fm. Sleipn		Promo / Co	-	South *
168	Jurassic		Bajocian Aalenian	Brent Gp.	Sandnes Fm. er Fm. Bryne Fm.	Bryne / Sandnes Formations South * Bryne / Sandnes Formations Farsund Basin		
172 175	Jur		Thancian					
178			iour cidri	Johansen Fm.		Johanse	n and Cook Format	ions •
182 185		Early	Pliensbachlan	Cook Fm.		s on on be	cook on the	
188			Sinemurian					
192 195			Hettanglan	Statfjord Gp.		Nansen	Eirksson	Raude
198			Rhaetlan		Gassum Fm.		Gassum Fm.	
202 205			National		Skagerrak Fm.			
208	<u>.</u>	Late	Norian					
212 215	riassic	Late						
218	Trie		Camlan		ions not			
222 225				evalu	uated			
228		Middle	Ladinian					
232								

* Evaluated prospects

The Boknfjord Group, North Sea

(an example of how to evaluate a seal for a CO₂ storage site)

Froan Basin, Norwegian Sea

(an example of how to evaluate a saline aquifer as a CO₂ storage site)

Example from the Froan Basin

The Garn/lle aquifer		Summary	Summary
Storage system		half open	closed
Rock volume		4400 Gm ³	4400 Gm ³
Net volume		1100 Gm ³	1100 Gm ³
Pore volume		300 Gm ³	300 Gm ³
Average depth Garn Fm		1675 m	1675 m
Average depth lle Fm		1825 m	1825 m
Average net/gross		0.25	0.25
Average porosity		0.27	0.27
Average permeability		580 mD	580 mD
Storage effieciency		4 %	0.2 %
Storage capacity aquifer		8 Gt	0.4 Gt
Reservoir quality			
	capacity	2	2
	injectivity	3	3
Seal quality			
	seal	3	3
	fractured seal	3	3
	wells	3	3
Data quality			
Maturation			

CO₂ after termination of injection

CO₂ dissolves in water and become heavier than water

Storage capacities, characterization and maturation of potential CO₂ storage sites on The Norwegian Continental Shelf

Aquifer	Capacity Gt	Injectivity	Seal	Maturity	Data quality
North Sea aquifers					
Utsira and Skade Formations	15,8	3	2		
Bryne and Sandnes Formations	13,6	2	2/3	-	
Sognefjord Delta East	4,1	3	2/3		
Statfjord Group East	3,6	2	3		
Gassum Formation	2,9	3	2/3		
Farsund Basin	2,3	2	2/3		
Johansen and Cook Formations	1,8	2	3		
Fiskebank Formation	1	3	3		
Norwegian Sea aquifers					
Garn and Ile Formations	0,4	3	3		
Tilje and Åre Formations	4	2	2/3		
Barents Sea aquifers					
Realgrunnen Subgroup, Bjarmeland Platform	4,8	3	2		
Realgrunnen Subgroup, Hammerfest Basin	2,5	3	2		
					_
Evaluated prospects					-
North Sea	0,44				
Norwegian Sea	0,17				
Barents Sea	0,52				
					_
Abandoned fields			1		
North Sea	3				
			1		
Producing Fields_2050					
North Sea 2050	10				
North Sea_Troll aquifer	14				
Norwegian Sea	1,1				
Barents Sea	0,2				

Interaktive CO2 Storage Atlas

http://gis.npd.no/themes/co2storageatlas/

NPD CO2 Storage Atlas NCS Compiled edition		
Map Layers		< I want to
+ 🖌 FactMapsData		
Theme: CO2 Storage Options		•
+ 🗸 Norwegian North Sea	>	
🕂 🖌 Norwegian Sea	>	
🛨 🖌 Barents Sea	>	
All storage options outlines (fo	>	Tomso
Approximate limit for significa	>	
Theme: CO2 Storage Depths		Bode Bode
+ Norwegian North Sea	>	
+ Norwegian Sea	>	T T T T T T T T T T T T T T T T T T T
+ Barents Sea	>	Trondheim
Base Cretaceous Unconformity	>	
+ Theme: CO2 Storage Thickness		
Basemap: Simply Yellow		
Basemap/Ocean		Verbranger
Show Legend		
ñ 🖻		

CO₂ Storage Capacity Norwegian Continental Shelf

Safe carbon dioxide (CO₂) storage in geological formations depends on careful storage site selection.

Snøhvit 4D Monitoring and pressure maintenace

The pressure in the Tubåen formation increased some faster then expected and the operator had to do an invterention in the well to preventmthat the pressure increase across ther established fracture pressure at 390 bar.

4D RMS amplitude map at Top Stø 2 (-10+20ms) for 2009-2011 (left) og 2009-2012

4D seismisk section for 2009 (left), 4D difference 2009-2011 (middle) and 2009-2012

Source: Statoil

We need to know the consequences of a possible CO₂ leakage on a short, medium and long term

pH: 8.2

- Assess the ability of organisms and communities to adapt to elevated CO₂ levels
- Identify biological indicators & monitoring techniques to detect CO₂ seepage

Source: Hall-Spencer et al., 2008

~7.0 - 6.6

Methodes for early detection of a possible CO₂ leakage

- Pressure measurement in the wells
- Seismic
- Fauna/bacteria mats
- Monitoring of the water column

Sampling of Bacterial Mats

Why CCS?

COP21, the 2015 Paris Climate Conference

IEA scenarios Key technologies to reduce power sector CO₂ emissions between 6DS and 2DS

Note: Percentage numbers refer to the contribution of the technology area to the cumulative CO₂ reduction between the 6DS and 2DS over the period 2012-50.

Key pointElectricity savings in the end-use sectors would stabilise power sector emissions at
levels slightly above today's; a portfolio of low-carbon generation technologies is
needed to sufficiently decarbonise electricity for 2DS targets.

Norway has few suitable emission sources

of Petroleum and Energy

CLIMIT is the national programme for research, development, piloting and demonstration of CO₂ capture and storage (CCS) technologies for power generation and other industrial sources.

CLIMIT supports development of knowledge, technology and solutions for CCS

- Power generation with CCS
- CO₂ capture in industry
- Compression and transport
- CO₂ storage
- EOR: CO₂ use combined with storage

Why is it so difficult?

If CCS is so important why do we not have it already?

- Currently no commercial enterprise anywhere that has CCS as its core activity
- Perceived as risky and expensive
- CCS combines different activities ('the CCS chain') that are individually well understood but traditionally operate as separate businesses
- Successful businesses have little incentive to extend into unfamiliar & capital intensive territory
- Other energy innovation (e.g. wind, solar etc.) have used existing infrastructure. CCS infrastructure needed.

Financing – the key to crack the CCS business model

- Combining CCS and CCU and by that improving the profitability of the total capture project.
- Reducing cost and risk by technology development
- Emission limitations
- A functioning quota system with minimum prices
- Taxes on CO2 emissions

About utilization of CO₂

INTERNATIONAL ENERGY AGENCY

Storing CO₂ through Enhanced Oil Recovery

Combining EOR with CO₂ storage (EOR+) for profit

WORKSHOP REPORT 2012

Joint IEA-OPEC workshop on CO₂-enhanced oil recovery with CCS

Kuwait City, 7-8 February 2012

Dr. Wolf Heidug

The view expressed in this paper do not necessarily reflect the view or policy of the international Energy Agons (2023) Scaretains or of its individual momber countrics. The paper does not scarbing advices any scarefic issue or putations. The 12A states no tract he eraponable for any use of, or reliance on, the paper. Comments are vectored, directed to John Spromethane are, DENEMA 2014.

CO₂ for EOR

Enhanced oil production at Weyburn Base Waterflood Production Incremental Vertical Production Incremental Horizontal Production Incremental Miscible Flood Production Thousands bbl/d **CO**₂

CO₂ storage

Why is CO₂ efficient for EOR?

The CO₂-EOR industry has 40 years of commercial operational experience from US and Hungary

About 65Mtons CO_2 used annually for EOR in US.

Today, CO₂-EOR produces nearly 100M bbls annually (about 6 percent of US domestic production)

Source: DoE/NETL

CO₂ for enhanced oil recovery (EOR) and storage

Screening-studie of 23 oil fields in the North Sea (Norwegian part)

Modeled recovery : 320 MSm^3 with ca 70 Mt CO₂ anually for 40 years

	Scenario 1	Scenario 2	Scenario 3
Annual amount of CO2 imported, million tonnes	3.25	1.35	3.25
Total well costs, billion USD	1.1	1.1	1.7
Total investment costs, billion USD	1.8	1.8	2.9
Total NPV, billion USD	5.3	2.9	6.9
Total oil production, % of OOIP	54.1	45.5	51.0
Total EOR oil, million Sm ³	24.1	13.2	30.1
Total EOR oil, % of OOIP	10.9	8.8	10.3
Total stored CO ₂ in oil fields, million tonnes	28	25	43
Total stored CO ₂ in aquifers, million tonnes	69	15	55

CO2 EOR- using subsea technology AkerSolutions concept (Climit)

- Transportation of Captured CO2 by ship or pipeline
- Direct Injection from ship
- Compression and fluid separation subsea
- Reduced need for modifications on existing hardware
- Enables reuse of subsea installations
- Reduced investments enable different strategy

Komplett subsea-løsning for CO₂-EOR

- Gass separering
- Olje/ vann seperasjon
- Reinjeksjon av anriket CO₂
- Økt olje utvinningsgrad: 5 12 prosent

(Kilde: Aker Solutions)

Cost

A pilot facility for algae production at TCM

About CO2-intensive industries - and finding solutions

Plan: A full-scale CCS chain in Norway by 2022

Feasibility study on full-scale carbon capture, transport and storage (CCS) in Norway (July 2016)

The main goal of The Norwegian CCS policy is to identify measures that can contribute to technology development and cost reductions.

Carbon capture at Klementsrud Energy recovery from waste

Full Scale Carbon Capture at Norcem Brevik

CO2 emissions in the cement sector

	2015
Globally	5 - 6 %
Norway	2.6 %
HeidelbergCement Group	< 100 M tons/y
Norcem Brevik	~ 800 k tons/y

Cost for transport of CO_{2 (IEA)} Transport costs for onshore and offshore pipelines per 250 km.

Ships transport of CO2

Transportation of CO2 is proven feasible both by pipeline and ship
Ship transportation of CO2 could be an enabler for realising big scale CCS

GASSCO

The selection of transport condition will be performed as a value chain assessment

M/T Yara Gas III alongside the quay near Yara's ammonia plant in Porsgrunn, Capacity: 1200 t of liquefied CO_2 in 2 tanks of 600 tons capacity each Ship type: Converted container vessel

Photo: Larvik Shipping

Smeaheia location

Source Statoil

Project plan

About regulation and incentives

Regulation of Carbon Transport and Storage

CCS Regulation in EU ("CCS Directive")

• Ensuring there is no significant risk of leakage or damage to health or the environment

Norway

Forskrift om utnyttelse av undersjøiske reservoarer på kontinentalsokkelen til lagring av CO₂ og om transport av CO₂ på kontinentalsokkelen

➢ based on the EU "CCS Directive" and the existing Norwegian Petroleum legislation

Ministry of Petroleum and Energy (new regulations and part of the Petroleum Law)

Ministry of Environment (amendment to Pollution Control regulations)

Risk acceptance criteria are based on the EU "CCS directive" and the London Protocol

What we need to know before a storage permit is granted

Regulators:

- What can be the consequense of a leakage?
- How fast can we detect any possible leakage?
- Is it possible to do CO₂ storage in a safe way with regard to the ecosystem?
- What will happen with the injected CO₂ after close-down of the site?
- Is it possible to volumetrically measure a leakage (CO₂ quotas)?

CO₂ storage Operators:

- Demonstrate that CO₂ storage can be done in a safe and secure way
- What is the consequenses of a leakage
- Design a remidiation plan
- How much will it cost and who pay what?

- Exploitation : financial strength, technical expertise and reliability considered necessary to operate and control the storage site
- Plan for development and storage: Impact assessment plan, monitoring plan, mitigation and plan for close down.
- Storage of CO₂: continuously evaluate technical solutions and take appropriate action. The operator shall
 monitor the injection facilities and storage complex, including the distribution of CO₂.
- The Ministry or anyone authorized shall supervise the storage locality at least once a year until three years after the closure, and then every five years until the responsibility is transferred to the state. By supervision shall the Ministry or anyone authorized examine the relevant injection and monitoring facilities, reservoir conditions, and the effect of the storage complex to the environment.
- Shutdown of a storage site: The operator is still responsible for monitoring, reporting and implementation of corrective action and responsible for sealing the storage site and removing the injection facilities.
 - All available information indicates that the stored CO₂ will remain completely and permanently contained. The operator must document that the actual behavior of the injected CO₂ are consistent with the modeled behavior, that it can not be detected leakage and the storage locality develops toward a state of permanent stability.
- A minimum period shall not be less than 20 years unless the Department or the attorney is convinced that the requirement are met before the end of this period

The North Sea Basin

Storage of CO₂ is about:

Thank you for listening!

Acknowledgements to Fridtjof Riis, Jasminka Mujezinovic, Rita Sande Rød, Ine T.Gjeldvik, Christian Magnus, Maren Bjørheim, Andreas Bjørnestad, Van T.H.Pham, Inge Tappel, Ann Helen Hansen (Norwegian Petroleum Directorate)

The Norwegian CO₂ Storage Atlases can be downloaded for free from <u>www.npd.no</u>

