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Our latest servers:

- Four Titan X GPUs

- 14 336 cores

- Any gamers dream fulfilled..




Our latest servers:

- Four Titan X GPUs

- 14 336 cores

- Perfect for making money...




We use the GPUs for Deep Learning

Deep Neural Network
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__NRis an applied research institute
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» Established by the government in 1952 to run NUSSE
Private non-profit foundation since 1985

Financed by:

= Domestic private companies

= Public sector

= Norwegian Research Council and EU grants
= International companies

Revenue 100 mill. NOK
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NR has three main activities

» Statistical and mathematical
analysis and modeling

» Remote sensing, image analysis
and pattern recognition

» [Information and communication
technology (ICT)
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Deep learning — arevolution in computer vision
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Machine learning

Machine Learning is based around the idea that we
should really just be able to give machines access to
data and let them learn for themselves
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Why the Machine Learning revolution now?

More data More (cheap) computational power
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ImageNet 2012 contest winner
(Krizhevsky et al.)

224

>

>

dense dense
13 13 13 — —

dense
3
3 - e m—
13 ) 3 - |
3
L]

284 384 256

M || ||
pooling 4036 4096

blax
poaling

Max
pooling

Deep Learning = Neural network with many layers

Large convolutional neural network
8-layers
60 million parameters
Trained with back-propagation on GPU, using all known tricks

Error rate: 16 %
Previous state-of-the-art: 26 % error
A REVOLUTION in computer science



ImageNet Large Scale Visual Recognition
Challenge (ILSVRC)
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Machine learning performance
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Machine learning (ML) performance

Time series one-step-ahead prediction
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ML Methods

9.00 | Statistical Methods | 517 834 839 856 858

Multi-Layer Perceptron (MLP)
Bayesian Neural Network (BNN)
Radial Basis Functions (RBF)
Generalized Regression Neural Networks (GRNN), kernel regression

K-Nearest Neighbor regression (KNN)
CART regression trees (CART)
Support Vector Regression (SVR), and

Gaussian Processes (GP)
Random walk (RW)
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Makridakis S, Spiliotis E, Assimakopoulos V (2018) Statistical and Machine Learning forecasting methods:
Concerns and ways forward. PLoS ONE 13(3): e0194889. https://doi.org/10.1371/journal.pone.0194889
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Overfitting Is very common in Machine
Learning algorithms

Complex model (60 million parameters)
fits all data but has no predictive power

Splitting data in training and validation
sets is crucial
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€J9 Forskningsradet

(DOBigInsight

BIG INSIGHT — Statistics for the knowledge economy

BIG INSIGHT shall focus on two central
* Norsk Regnesentral innovation themes; deeply novel
* University of Oslo personalised solutions and sharper
e Oslo University Hospital predictions of transient behaviours:
* University of Bergen  discover radically new ways to target,
- ABB towards individual needs and conditions,
e DNB products, services, prices, therapies,
« DNV-GL technologies, thus providing improved
* Gjensidige quality, precisions and efficacy.
« HydroEnergi ° NAV » develop new approaches to predict
* Skatteetaten critical quantities which are unstable and
* Folkehelsa in transition, as customer behaviour,
e »  Cancer Registery of Norway patient health, electricity prices,
m—-—": e Telenor - o
—_— machinery condition, etc.




Machine learning projects at NR

f seismic

Interpretation of ultrasound
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Choose method that suits the problem

Deep learning er analysis

Text Mining ——

Clustering / wnt Boosting

Statistical models Monte Carlo Simulation

Regression
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The SAND (Statistical Analysis of
Natural Resources) group

One of 3 research groups at NR

Currently 16 persons
= 9 PhD’s
= 1 PhD students

= Background from math, statistics,
physics, computational
chemistry, computer science

350+ conference contributions and journal articles

Main markets are

= National oil companies

= International oil companies

= Roxar Software Solutions

= National research institutes

= Public science funding including EU
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Main research areas

Petroleum reservoir models

Structural geology

e o i e B

Inversion of geophysical data

History matching and dynamic data

-« Decision support and data analysis

20



GIG consortium: (www.nr.no/GIG)
Geophysical Inversion to Geology

Geophysical inversion is hard:
Ambiguous: Same response from different geology

Indirect measurement
E.g. seismic velocities instead of porosity and permeability

Uncertainty
Physics model inaccurate
Noise

Inversion requires “regularization™
Restrict the space of possibilities
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https://www.nr.no/GIG

GIG: Basic idea is to regularize
Inversion by geological constraints
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The maximum probability for hydrocarbons

Probability map from inversion
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Aker, E., Roe, P., Kjgsnes, @., Hauge, R., Dahle, P., Ahmadi, G.R. and Sandstad, O.A., 2017, Probabilistic prediction of lithology-
fluid-classes from seismic - A North Sea case study, Presentation at 4th International Workshop on Rock Physics, Trondheim,
01.06.2017 23
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Longitudinal cross section of most
probable Lithology-Fluid class

24/9-6

Shale e -

Sand

HC-filled sand
Chalk
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» The hydrocarbon filled sand injectite is evident

» Intense colours are more certain
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We have

» Unique competence
=  math/statistics/machine learning/programming
= long experience in petroleum applications

» Long history of successful projects

Research (publications, presentations, PhD’s,...)
New methods

Case studies

Commercial software

WWW.Nr.no
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Thank you for
your time
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