SINTEF Digital Research within Computational Geosciences

Knut-Andreas Lie, SINTEF Digital

Joining Forces, NPD, Stavanger, April 2018

One of Europe's largest independent research organisations

() SINTEF

Applied research, technology and innovation

Expertise from ocean space to outer space:

Renewable energy Ocean space

Industry

Materials

Micro-, nano- and biotechnology

Climate and

environment

Oil and gas

Health and welfare

infrastructure

Society

Transport

SINTEF Digital

Sensors

Autonomy

Mr.

Artificial Digital Twin Intelligence

Human Factors

Digital

Platforms

Connectivity Big Data

Service by design

Mixed Reality

ed

Cyber Security

Computational Geosciences group

- One of eight research groups at the department of Mathematics & Cybernetics, SINTEF Digital
- Eleven researchers/postdocs/PhD students
- Offices in Oslo, Norway
- Performs a mixture of basic and applied research
- Well known for our open-source software: MRST and OPM
- Internationally oriented
- Strong publication record
- Main clients: Statoil, ExxonMobil, RCN, Wintershall, Total, ...

André B. Brodtkorb

Atgeirr F. Rasmussen

Halvor M. Nilsen

Knut-Andreas Lie

Odd A. Andersen

Olay Møyner

Stein Krogstad

Xavier Ravnaud

Øvstein Klemetsdal

Expertise: improved tools for reservoir simulation

Flexible simulators, easy to extend with new functionality, scaling with accuracy requirement and computational budget

seconds	minutes	hours
Diagnostics/proxies	Model reduction	Full simulation
Flow diagnostics/volumetrics Physics-based proxies Fast optimization Spill-point analysis	Grid coarsening Flow-based upscaling Multiscale methods Model-reduction techniques Vertical-equilibrium models	Black-oil, EOR, compositional, geomechanics, thermal Grids and discretizations Nonlinear and linear solvers Rapid prototyping of simulators Adjoint formulations and (closed- loop) optimization

Recent achievements

Industrial:

- Next-generation simulation engine in INTERSECT (Schlumberger, Stanford, SINTEF)
- Model-reduction and QA tools for iRMS, ExxonMobil's new simulator
- Open-source simulator for Statoil (OPM Flow), pilot tested as Eclipse replacement on one asset

Academic:

- Authored 10 of 37 papers in *Computational Geosciences*, Vol. 21, Issue 5-6, 2017
- Olav Møyner: best PhD thesis award at NTNU

Open source: accelerated innovation

Community research platforms:

- MRST flexible toolbox for rapid proof-of-concept
- OPM aimed at full commercial use
- \circ Standard methods + Eclipse input
- State-of-the-art methods from research
- $\circ~$ Professional quality code, extensive documentation, tutorials, \ldots

Large, world-wide user group:

- Teaching/research at leading universities (Stanford, TU Delft, Heriot-Watt, Texas A&M, Rice,...)
- $\circ~$ 13.700+ unique downloads since 2013
- \circ 108 master/PhD theses
- $\circ~$ 150+ publication by authors outside SINTEF

Version 2016b was released on the 14th of December 2016, and can be downloaded under the terms of the GNU Generi Public License (GPL).

Gridding and coarsening

Extensive experience with various grid types:

- Corner-point and 2.5D PEBI
- 3D PEBI adapting to lower-dimensional objects
 More accurate description of complex reservoirs
 Grid coarsening:
 - graph-based and agglomeration-type methods
 - flow-adapted grids
 - hierarchical preserving geological structures

Discretizations and solvers

Consistent methods for elliptic equations:

- improved accuracy
- reduced grid-orientation errors

Methods for transport equations:

- high-resolution methods
- streamline methods

Solution strategies:

- sequential/implicit/localized methods
- multiscale methods
- improved nonlinear solvers (Gauss–Seidel, optimal ordering, trust-region)

Well modeling

Improved description of multilateral and instrumented wells

- Multi-segment wells
- Network models
- Solution algorithms
- Upscaling (well indices, near-well zone)
- (Autonomous) inflow control devices

Flow diagnostics

- Time lines under steady flow conditions
- Volumetric communication
- Well allocation factors
- Measures of dynamic heterogeneity
- Simplified displacement estimates
- Estimates of NPV, etc

Flow diagnostics used for optimization

Example: optimize net-present value for the Norne benchmark case (IO Center, NTNU)

Objective function

- proxy computed from time-of-flight

Optimization:

- adjoints or numerical differentiation

Rate targets subsequently adjusted by reservoir simulator

Two base cases: full-blown (base) and more balanced injection/production (base2)

Other examples: optimize well placement, drilling sequence, etc

Geological CO_2 storage

Long-term trapping in large-scale saline aquifers

- Traps, spill-point analysis, and static capacity
- Vertical-equilibrium models: structural, residual, and solubility trapping
- Fully implicit hybrid 3D/VE
- Rigorous optimization of aquifer utilization

Geomechanics and fractured media

Improved discretization methods to enable

- mechanics on geological models without regridding.
- simulation of hydraulic fracturing and fault activation

Various approaches to fractured media:

- Black-oil, discrete fracture network (DFN)
- Hierarchical/embedded fracture models + multiscale solver
- DFN model coupled to VEM/MSPA DFN
- Modified discrete element method (MDEM)
- Phase-field modelling + isogeometry
- Dual-poro/perm + flow diagnostics

MDEM coupled to MRST

Open JIP proposal

Mechanistic simulation of water, produced-water, and polymer injectivity:

- Mechanistic models for PWRI and polymer injectivity
- Water injection experiments under realistic conditions
- Research framework: flexible, open-source, multi-domain/physics
- Deployable multi-physics water-injectivity simulator

JIP proposal:

- SINTEF Industry / Digital + Petrell
- annual budget 4.5MNOK over four years
- five or more industry partners

Contact

Prof. Knut-Andreas Lie (Chief scientist / Research manager) Phone: +47 930 58 721 Email: Knut-Andreas.Lie@sintef.no

http://www.sintef.no/compgeosciences

http://www.sintef.no/mrst/
http://www.sintef.no/co2lab
http://www.opm-project.org