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= Introduction

= One of the key calibration steps in time-lapse seismology is finding the optimal
dynamic time shifts to calibrate the monitor surveys with the base survey.

= Traditionally, this was done using standard cross-correlation methods, and this is
still the main technique in many workflows.

= Recently, several new options have been developed for computing the shifts:
— The Taylor series expansion method
— Dynamic time warping
— Vector warping with Gaussian windowing

= This talk will summarize these methods and show their application to a steam
flood case study from northern Alberta.
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== Case Study: GLISP Pilot

AMOCO/AOSTRA Gregoire Lake In-situ
Steam Pilot (GLISP)

(approx. 40 km south of Ft. McMurray)
» Base survey acquired April 1985
 First Monitor acquired January 1987
« Second Monitor 1988

» Third monitor acquired 1989




— Base Map for GLISP Pilot

- A permanent Source and n:x ::x x:x x:l l:l ::x x:x n:x x:x u:x ::x ::: x::"n':_?:'i-f:':

receiver array were used. cox xex xex Ttk ex xex xex wex wd xex me

. Seismi « « « QObservation o « 4 e e

. . . . o . .

eismic coverage approx. . . WellHO-7  Injection : 2 s

200 X 200m. Inline21 > - - \- - Well H-6 Do ‘

' . . . . . o

- Bin Size 4 X 4 m- 168| ml:‘ &‘ ‘:x ”:‘ ”:le%x:x ﬂ:‘ K:!’ :“ !:‘ xex *;:* xXex l.l

) . . . . . e A3 e . o HE * . o ’

™ Frequency bandWIdth 20_ xex xex xex - o= “‘.‘ ST o xex xex Hogg‘)b xex xex x:::l xe xo:

:* ¢ Production : : . :

240 HZ. . . . . . . . . o .

. . x:x x:x x:x We” H_3 ; x:x u:x x:x uH.; l:l x::u xex x::

= Ten wells were drilled in e e e e e e e e e e e e N

the pilot area. x:K !:K ﬂ:! x:x K:K X:K K:ﬂ X:‘ K:K X:‘ x x !EK K:‘ ‘::

. . . . . . . . . . . ol

n We WI” IOOk at Inllne 21’ X tx X8X X8X XOX XOX XexX Xe x 2218-): xex xex x x :u:::__a_:___s

. . | m
which intersects wells & Centalinjction el
HO_7’ H_3 and H_6 :)ob gr;:eursgggnw\:lgll
—— Monitor Expansion




== Recording history of GLISP Pilot

The Base survey was recorded in 1985.
First time period

Three wells (H3, H4, H5) were selected for steam injection that continued
for 15 days each. The first Monitor was recorded in 1987.

Second time period

The 3 active injection wells (H3, H4 H5) were converted to producers.

An injector well (H6) was selected and steam was injected for a period of 96
days. The second Monitor was recorded in 1988.

Third time period
Steam was injected into 2 producing wells for a short time period.

Steam was injected into the main injector well (H6) for a period of 6 months.
The third Monitor was recorded in 1989.




== Data before processing

Kline
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= Here is the amplitude
difference between the
base survey and first
monitor survey before
any processing, with
the sonic logs inserted.

= The blue horizon is the

base of oil sand, and
the top and base
reservoir are indicated
on the log.

= The anomalies do not

stand out in that zone.
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== [ he time-lapse workflow
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== Base — Monitor 1 difference after step 5
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== Time variant time shifts using cross-correlation

= The theory for cross-correlating two vintages of seismic data, v,(t) and v,(t),
can be written:

N-1
Cyy, (1.7) = D Vi (t)V,(t—7), 7 = —max_lag, ... ,+max_lag.
t=0

= |n the case of time-variant time shifts, short correlation windows are defined
throughout the reservoir zone and the shifts for each window are computed.

= Shifts for samples between the windows are then interpolated.

= The time variant time shifts give the time delay information required for
Interpretation and also can be removed so that difference amplitudes can be
correctly interpreted.

= This is shown in the next few slides.



= TIme variant cross-correlation shifts

= Below are the time variant cross-correlation coefficients and time shifts
between the base and monitor 1:
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10 = Note that the shifts are quite large and noisy.



== Correlation time shifts on time slices

= Here are the correlation time shifts over a constant time slice of 214 ms:
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= Note that the time shifts are quite noisy but, as expected, get more negative
around the injected steam area.
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Cross-Correlation Coefficients
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== Conditioning the cross-correlation shifts

= One way to improve the
time shift quality is to keep
only those within a range
of high correlation and
expected time shift.

= Here is a cross-plot of the
X-corr times vs X-corr
coefficients.

= We will pick a zone that
includes only negative time
shifts and correlation
coefficients > 0.55.
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== Comparison of cross-correlation shifts

= Here is the result of excluding shifts outside the zone:

Before conditioning

12 = Notice the improvement of the picks.



== Conditioned Correlation time shifts on time slices

= The conditioned correlation time shifts over a constant time slice of 214 ms:  Shift
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= Note that the time shifts are much smoother and more negative because of
the filter.

14 Q



== Base — Monitorl diff. after cross-correlation shifts
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== NRMS after cross-correlation shifts

= Here is the Normalized Root-Mean-Square (NRMS) amplitude difference between
the base and each monitor survey after conditioned time variant shifting:
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= NRMS averaging is a common way of normalizing differences between surveys.
= The NRMS averaging was done between Horizons 1 and 2.
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== Multivintage time-shift estimation by Taylor expansion

= Naeini, Hoeber, Poole and Siahkoohi (2009) propose a multivintage time-shift
estimation procedure that was based on earlier work by Hatchell et al. (2007)

on 4D geomechanics reservoir monitoring.
= They start by assuming that two vintages of seismic time lapse data that only
differ by a time shift of z;, can written as a Taylor series expansion as follows:
dv, (t)
dt

Vv, (t) =V, (t+17,) = Vv, (1) +V, ()7, ,where v, '(t) =

= Taking the difference between the left and right hand sides of this equation
we can minimize it by setting the derivative with respect to the time shift

equal to zero, as follows:

.

M =0, where f,(z,) = Z(Vz (1) —vy(t) —v/(t) 7, )2
dz,, r=l

17



== Multivintage time-shift estimation by Taylor expansion

= This expression can be extended to multiple vintages and also to the
symmetric time shift z,,, which should be the negative of z,,.

= Without going through the detailed calculations this gives us:

= M and 7,, = M where:

Ty =
a, +a, a, +a,

&, = Zvllz(t)’ b, = Z[(Vl(t) -V, (t))Vll(t)]’ Ay = sz.z(t)’ and by, = Z[(Vz (t) _V1(t))V2'(t)]-

= Note that we can now compute the shifts simply from the traces and their first

derivatives.
= As in cross-correlation, the shifts are computed with a sliding window.

= We will now apply the Taylor shift method to the GLISP dataset.
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== Cross-correlation vs Taylor time shifts

= Here is a comparison between cross-correlation and Taylor time shifts:
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== Taylor expansion time shifts on time slices

= The Taylor expansion time shifts over a constant time slice of 214 ms:
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= Note that the time shifts are dominantly negative without the use of a filter

when compared to the cross-correlation approach.
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Base — Monitorl diff. after Taylor s
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= Here is the amplitude

difference between the
base and first monitor

survey after the Taylor
shifts.

As with the cross-
correlation method,
many of the extraneous
artefacts below the
base of reservoir have
now been removed,
revealing the
production-induced
shifts.
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== NRMS after Taylor time shifts

= Here is the Normalized Root-Mean-Square (NRMS) amplitude difference between

the base and each monitor survey after application of Taylor time shifts:

) 6252‘5290

625:?240 )

b Tt

POTIIX

6253190 ,

999999

T T
999999999999

=
1 i

g

z
4 ILI? -

\ 6252‘5290

625?240 )

6253190 )

1]

1L:120 H——————
=
E

T T T T T T T T T T T T
499730 499780 499830

T T T T
499880

\ 6253‘290

6253‘240 )

6253180 )

@
S
b It

999999

= The NRMS averaging was done between Horizons 1 and 2.

Base — Monitor 2

NMRS Scale

1.0

0.88



= Dynamic time warping

= Dynamic time warping (DTW) was first developed for voice recognition by
Sakoe and Chiba (1978) in their paper “Dynamic programming algorithm
optimization for spoken word recognition”.

= Their algorithm was used to stretch and to squeeze speech to match the
stored voice pattern in phone conversations.

= Dave Hale from adopted the algorithm for seismic processing (“Dynamic
warping of seismic images”, Geophysics, 2013).

= The algorithm is useful for lining up seismic images from different time-
lapse vintages, specifically to determine the time variant time shifts.

= As Hale (2013) pointed out, this method is more accurate than the cross-
correlation method when the shifts vary rapidly.

23



== Dynamic time warping theory

= Let us now look at the problem from a mathematical point of view.

= For a single vintage, dynamic time warping finds all the shifts
simultaneously by minimizing the sum of error for all possible lags, or:

N-1

7(t) = min{Ze(t,l(t))}, t=0,...,N =1, where

t=0

e(t,1(t)) = (vy(t) v, (t+1(1)))", and I(t) is an integer lag.

= One other important aspect of DTW is that it is constrained so that the lag
between successive samples cannot exceed + or — 1, or

‘T(t) —(t —1)‘ <1
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== Cross-correlation vs dynamic time warping shifts

= A comparison of cross-correlation versus dynamic time warping shifts:
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== Dynamic time warping shifts on time slices

.. . . . . Shift
= The dynamic time warping shifts over a constant time slice of 214 ms: (ms)
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= Note that the time shifts are less smooth than the Taylor shifts but still

predominantly negative, indicating lower velocity due to injection. (\
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== Base—Monitorl diff. after DTW shifts
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= Here is the amplitude
difference between the
base and first monitor
survey after the DTW
shifts.

= Again, many of the
extraneous artefacts
below the base of
reservoir have now
been removed,
revealing the
production-induced

shifts. x
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== NRMS after dynamic time warping time shifts

= Here is the Normalized Root-Mean-Square (NRMS) amplitude difference
between the base and each monitor survey after the DTW time shifts: NMRS
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= The NRMS averaging was done between Horizons 1 and 2.
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== Apparent displacement vectors

= Until now, our dynamic shift calculations have been in the vertical direction.

= However, we know that injection of heat or fluids into the reservoir will also
affect the horizontal stresses and create inline and crossline shifts (Guilbot and
Smith, 2002).

= In 2009, Dave Hale published a paper in Geophysics entitled “A method for
estimating apparent displacement vectors from time-lapse seismic images”,
which proposed a way to compute all three shifts.

= Hale’s work extended earlier work by Hatchell (Hatchell and Bourne, 2005, Cox
and Hatchell, 2008), Nickel (Nickel and Sgnneland, 1999 and Nickel et al.,
2003), and Hall (Hall et al., 2002, and Hall, 2006).

= Since this method is an extension of the correlation equation shown earlier, the
next slide will show this extension to the vector case.
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== Displacement vector theory

= The basic problem is now to find the following vector shifts:

v,(1) =vi(J +u(])), where
] =(l I, J5) 1s a vector of vertical, inline and crossline directions,
and u(j) = (u,(}),u,(j),u,(J)) is a vector of displacements.

= In the displacement vector computation, Hale (2009) uses cross-correlation, but
now extends it to three dimensions and applies a Gaussian weighting function:

Cu (K1) = TV, (J + 1) xW(K - ]), where

w(k) = exp{ 5 Zk} Is a Gaussian weighting function of radius o.
(o)

- U




= Cross-correlation vs Gaussian correlation time shifts

= Cross-correlation vs Gaussian correlation (or displacement vector) time shifts:
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= Note that the shifts are much less noisy than regular cross-correlation. (\




== (Gaussian correlation time shifts on time slices

= The Gaussian correlation time shifts over a constant time slice of 214 ms: Shift

(ms)
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= Note that the time shifts are most negative around well H-6.
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== Displacement vector in-line and cross-line shifts

= We also get two other volumes of shifts from the displacement vector
calculation, the inline shifts and crossline shifts, shown below:
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== (Gaussian correlation inline shifts on time slices

= The Gaussian correlation inline shifts over a constant time slice of Shift
214 ms: (traces)
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= Note the negative shifts around injector well H-6 and positive shifts around (
Injectors/producers H-4 and H5. Q
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== (Gaussian correlation crossline shifts on time slices

= The Gaussian correlation crossline shifts over a constant time slice of 214 ms:  shift

Base — Monitor 1

Base — Monitor 2
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Note the gradual change from positive to negative shifts at injector wells H-6,

H-4 and H5.
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== Base—Monitorl diff. after displacement vector shifts

e T . [l | Here is the amplitude
5 ; == | difference between the
R et N R = | base and first monitor
- R e e = 5| survey after ful
" o = = = - = | displacement vector
ﬁ%ﬁi s A 2 shifting.
: = [ Again, many of the
- | extraneous artefacts
= | below the base of
= | reservoir have now been

. | removed, revealing the

peragl Hil

-1354 p
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== NRMS after Gaussian correlation application

= The Normalized Root-Mean-Square (NRMS) amplitude difference between
the base and each monitor after Gaussian correlation time and lateral shift

application:
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= The NRMS averaging was done between Horizons 1 and 2.
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== Recording history of GLISP Pilot Revisited

38

The Base survey was recorded in 1985.
First time period

Three wells (H3, H4, H5) were selected for steam injection that continued
for 15 days each. The first Monitor was recorded in 1987.

Second time period
The 3 active injection wells (H3, H4 H5) were converted to producers.

An injector well (H6) was selected and steam was injected for a period of 96
days. The second Monitor was recorded in 1988.

Third time period
Steam was injected into 2 producing wells for a short time period.

Steam was injected into the main injector well (H6) for a period of 6 months.
The third Monitor was recorded in 1989.




== Summary of time shift results for Base — Monitor3

= The Gaussian correlation time shifts over a constant time slice of 214 ms:
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Correlation Taylor Shifts DTW Vector Warping

= Noting that H-6 was the main injector in the second two time periods, and that H-3, H-
4 and H-5 had been converted to producers after time period 1, the Taylor, DTW and
Gaussian Correlation results are more consistent than the conditioned correlation,,
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== NRMS amplitude difference comparison

= Here is a comparison of the NRMS amplitude difference between Horizons 1 and 2
for the Base — Monitor 3 results after our four main algorithms:

Correlation Taylor Expansion

= Noting that H-6 was the main injector in the second two time periods, and that H-3, H-4
and H-5 had been converted to producers after time period 1, the Taylor, DTW and

Gaussian Correlation results are more consistent than the Conditioned Correlation. (\
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Conclusions

In this talk | compared four options for the computation of time variant time
shifting between a Base and 3 Monitor Surveys in the GLISP project:

— Conditioned cross-correlation

— The Taylor series expansion method

— Dynamic time warping

— Dynamic vector warping with Gaussian windowing.

Of the four methods, the Taylor expansion shifts, Dynamic Time Warping and
Gaussian Correlation Vector warping appear to give more reasonable results
than the original conditioned cross-correlation method.

Gaussian Correlation Vector warping also produces inline and crossline shift
information in addition to time shift information.
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