Risk vs reward?

When to explore beyond the proven fairway?

Dave Quirk*, MGS Energy

Introduction
Play openers
What do historical statistics tell us?
Historical example of exploring a world class play
Ways of identifying new potential
Conclusions
Predicting future discoveries

* dgquirk@outlook.com

Pie Chart

Amalie Quirk, 2018

Introduction

Once a part play is proven...

- The chance of making another discovery is generally good...
- ...and, assuming the part play boundaries are defined correctly...
- The chance of finding reservoir, seal & charge is predictable

 But average size of discover decreases significantly over

Discovery sequence Campos offshore, all plays

32 billion boe (why here?)

Steps in creaming curve come from proving new part play (after crossing boundary)

Play openers

Play openers that caught the headlines

Some discoveries with disappointing follow-ons (so far)

Recent examples of resource found in part plays

Guyana, Mauritania-Senegal & many North Sea plays are exceptions

Recent examples of resource found in part plays

richness of play	MMboe per 1000 km ²	example plays	
Super-Rich	1000-2000	Middle East JU Arab Lst, Denmark KU Chalk	
Rich	500-1000	BR Santos Apt Pre-Salt, AO LCF Miocene turbidites	
Moderate	100-500	US GoM Mio-Pliocene, Hammerfest Basin Tr ssts	
Low	<100	IQ Kur Triassic carbonates, Algeria Lwr Paleozoic ssts	

from Quirk et al. 2017. Yet-to-find in play analysis. Journal of Petroleum Geology, 40, 217-48

What do historical statistics tell us?

Prospect column heights are not lognormal...

...but discovery size distributions are (thank goodness)

Risk vs reward? When to explore beyond the proven fairway?

Change in maturity of syn-rift Jurassic play in Haltenbank Platform

Risk vs reward? When to explore beyond the proven fairway?

FORCE underexplored plays, 31 Oct-1 Nov 18

Emerging phase – 1981-98 – total 6090 MMboe found: 19 discoveries, avg size 321 MMboe, PoSg 29%, 79% commercial

Established phase – 1998-2007 – total 675 MMboe found: 18 discoveries, avg size 38 MMboe, CoSg 58% (67% commercial)

Mature phase – 2008-13 – 592 MMboe found: 22 discoveries, avg size 27 mmboe, CoSg 60% (45% commercial)

Small discoveries are usually due to smaller-than-mapped container (+/- limited reservoir)

Risk vs reward? When to explore beyond the proven fairway?

FORCE underexplored plays, 31 Oct-1 Nov 18

Distribution of footprint areas in km² for Haltenbank Jurassic play

Rec. resource vs footprint area for Haltenbank Jurassic play

Equivalent pay in Haltenbank Jurassic play (i.e. 1 km² around well)

	1000000	1.0	
	16.0		
	0.214		
	0.75		
	0.40		
	0.85		
shape factor	0.85		
	4.7		

Risk vs reward? When to explore beyond the proven fairway?

FORCE underexplored plays, 31 Oct-1 Nov 18

Historical discovery rate (CoSg) in single & multiple plays

Quirk & Ruthrauff, 2008. Toward consistency in petroleum exploration. AAPG Bulletin, 92

Risk vs reward? When to explore beyond the proven fairway?

Historical discovery rate (CoSg) in single & multiple plays

Quirk & Ruthrauff, 2008. Toward consistency in petroleum exploration. AAPG Bulletin, 92

To assess chance of finding reservoir, seal, trap & charge use well traffic lights (not GDE interpretations) + seismic

Key geological boundaries define part plays / play segments - generally visible on seismic but can be delineated with structural elements, thickness maps, well traffic lights & play-coded discoveries ...but are these remain interpretations ...& need to be kept evergreen.

Draw boundaries with as few vertices as possible – to reflect uncertainty & to allow easy updating

Green = effective reservoir present, Yellow = uncertain, Red = reservoir absent Background grid is thickness of play interval (orange-yellow = thin, blue = thick)

Risk vs reward? When to explore beyond the proven fairway?

Historical example of exploring a world class play

Play-coded discoveries in North Sea (c.78 part plays, excl. SNS)

Total resource found & avg discovery size in main N Sea plays

Risk vs reward? When to explore beyond the proven fairway?

FORCE underexplored plays, 31 Oct-1 Nov 18

Brent JU paralic sst, North Viking part play – discovery sequence

Risk vs reward? When to explore beyond the proven fairway?

FORCE underexplored plays, 31 Oct-1 Nov 18

Brent JU paralic sst 1971-2014

114 discoveries20 billion boeav disc size 175 MMboe293 expl wellsCoS 39%

Brent JU paralic sst Jul 1971-Jan 1978

av disc size 271 MMboe

CoS 52%

Brent JU paralic sst Feb 1978-Oct 1993

av disc size 178 MMboe

CoS 28%

Brent JU paralic sst Nov 1993-Apr 2014

av disc size 44 MMboe

CoS 45%

Ways of identifying new potential

Established plays have...

- Low risk
- Value to those with infrastructure
- Relatively small volumes yet to find

Historical stats help decide value of continuing to explore where it already works

So, before we spend money on seismic...

- Can we see when a play is over-mature?
- Or when a play is under-explored?

What an underplayed play looks like (onshore Oman)

20,000 km², 51 exploration wells, 31% CoS (67% commercial)

What an underplayed play looks like (onshore Oman)

20,000 km², 51 exploration wells, 31% CoS (67% commercial)

And why take the extra risk of exploring an unproven play?

- Volumes & value...
- ...if it works

Risk vs reward? When to explore beyond the proven fairway?

Why did it take so long to find Johan Sverdrup?

Why did it take so long to find Johan Sverdrup?

How do you identify new part plays where the risk is worth taking?

- Analogues
- Sediment thicks
- Indications of hydrocarbons
- Seismic

In areas like Barents Sea, E Shetland Platform, NO-DK Basin

- Unless you have a large prospect / set of prospects...
- ...it is probably not worth taking the extra risk that a new play will not work

But a large closure or anomaly probably caught your attention in the first place!

Where are the new part plays which are worth chasing?

Where are the new part plays which are worth chasing?

(without giving away my favourites in Norway, UK & Denmark!)

- On the margins of world class kitchens
- Highs, ridges & elbows where hydrocarbons will focus
- Above, around & below salt structures
- In proven basins where imaging is poor
- Deeper than prevailing models have advised
- Any under-explored half grabens with evidence for charge

And strat traps are tough

- Charge focus is often challenged
- Both trap & well location live or die with pinch-out line... which is sub-seismic

- Structurally consistent flat spots help...
- ...but an amplitude anomaly is nothing more than that without rock
- And without DHI, historical data shows there is rarely follow-on after first discovery

Conclusions

Conclusions

- The North Sea region is a world class hydrocarbon province
- There is significant room for undiscovered resources on margins of basin & deeper
- You should question boundaries & keep your play analyses evergreen
- To find significant volumes requires stepping outside your comfort zone
- Use "what if it works" mentality
- Historical statistics & seismic can justify your choice
- But significant risk will remain...
- ...& be realistic on size

Predicting future discoveries

What do historical statistics tell us about exploring plays?

- Size of largest future discovery + sweetspot area has largest effect on YTF (& economics)
- New plays & sweetspot extensions contain most volume & value (unless already player)
- YTF in unproven part plays is either 0 MMboe or, if it works, typically ≥200 MMboe
- CoSg is usually >50% after first discovery in sweetspot (except where imaging is poor)
- Not much YTF in strat traps... unless proven DHI
- Hard to predict what makes certain plays world class

Predicting future discoveries in a part play – aka Yet-to-Find

- YTF is likely to be significantly wrong without seismic
 - but helps rank & decide on data
- Probabilistic YTF estimates tend to be overoptimistic
- Each play is unique
 - But historical data provide constraints to upside (e.g. MMboe/1000km²)

Theoretically all we need is:

- area of play segment
- upside discovery size
- downside discovery size
- no. of discoveries (prospects x PoSg)
- chance of being proven

predicted future discoveries, mmboe, plotted on log scale

100

10

But use different scenarios:

- largest discovery may not be that large
- many discoveries are smaller than model
- area of future fairway is optimistic
- unproven part plays often fail...
 but, if it works...

there are more discoveries than expected

e.g. closure area of anticipated prospect x P50 MMboe/sq km

sum of predicted discoveries = YTF

reverse cumulative probability scaled using transformation to inverse of std normal distrib so lognormal distributions plot as straight lines

upside

Х

discovery

Х

Χ

from Quirk et al. 2017. Yet-to-find in play analysis

downside

Example of scenario-based YTF calculation < part play outline

from Quirk et al. 2017. Yet-to-find in play analysis. Journal of Petroleum Geology, 40, 217-48

Mid case YTF scenario plotted as future discovery size distribution

Mid case future discovery scenario

from Quirk et al. 2017. Yet-to-find in play analysis. Journal of Petroleum Geology, 40, 217-48

Low case, mid case & high case YTF scenarios

URR scenario for a proven part play, deepwater GoM Already Found (historical) + YTF (prediction) as combined distribution

from Quirk et al. 2017. Yet-to-find in play analysis. Journal of Petroleum Geology, 40, 217-48

Historical data provide the following important data

In proven part plays

- Average discovery size (future will be smaller)
- Size distributions for small future discovery size (e.g. implied P99 resource & P90 area)
- MMboe/km² for discoveries (e.g. closure area x P50 MMboe/km² for size of large lead)
- Past discovery rate ≈ future CoSg
- Chance of finding reservoir, seal & charge remains similar once play established

In unproven part plays

- MMboe/1000km² for analogue play
- Features/1000km² for analogue structural domain
- 50-67% of offshore discoveries get developed (cf. >95% of onshore discoveries)

Use group wisdom to estimate chance that play works