

Fundamental Mechanisms for Smart Water in Sandstone and Carbonate

Tor Austad, Skule Strand and Tina Puntervold Smart Water EOR Group, IPT, UoS / IOR Aqua

Presentation given at Force Seminar, NPD, February 14. 2017.

What is "Smart Water"?

- <u>"Smart water"</u> can improve/change wetting properties of oil reservoirs and optimize fluid flow/oil recovery in porous medium during production.
- <u>"Smart water"</u> can be made by modifying the ion composition of injected fluid.
 - No expensive chemicals are added.
 - Environmental friendly.
- Wetting condition dictates:
 - Capillary pressure curve; P_c=f(S_w)
 - Relative permeability; k_{ro} and $k_{rw} = f(S_w)$

Different names

- BP: LoSal TM
- Shell: Designed Water [™] (Not allowed)
- Exxon: Advanced Ion Management, AIMSM
- Saudi Aramco: "Smart Water"
- Researchers: Ion Tuned Water

Water flooding

- Water flooding of oil reservoirs has been performed for a century with the purpose of:
 - Pressure support
 - Oil displacement
- Question:
 - Do we know the secret of water flooding of oil reservoirs??
 - If <u>YES</u>, then we must be able to explain why a "Smart Water" sometimes increases oil recovery and sometimes not.
- If we know the chemical mechanism, then the injected water can be optimized for oil recovery.
- Injection of the "Smartest" water should be done as early as possible, preferentially from the production start.

Smart Water in Sandstone

LS EOR effect in Sandstone

Low Salinity EOR-effect under forced displacement

General information/knowledge

Adsorption onto clay

Initial pH of FW = 6-6.5

Suggested mechanisms

- Wettability modification towards more water-wet condition, generally accepted.
 - Release of clay fines (Tang and Morrow 1999).
 - Multicomponent Ion Exchange (MIE) (Lager et al. 2006).
- Mechanisms not linked to wettability modification
 - Increase in pH lower IFT; type of alkaline flooding (Mcguri et al. 2005).
 - Migration of clay fines in analogy with linked polymer particles, microscopic flow diversion (Skauge et al. 2008)
 - Later Skauge and others observed that this effect was also present at HS conditions
 - Osmotic effects due to salinity gradient in pores (should be observed using model oil and cores without clay)

Increase in pH important

	NaCl (mole/l)	CaCl ₂ .2H ₂ O (mole /l)	KCI (mole /l)	MgCl ₂ .2H ₂ O (mole /l)
Connate Brine	1.54	0.09	0.0	0.0
Low Salinity Brine-1	0.0171	0.0	0.0	0.0
Low Salinity Brine-2	0.0034	0.0046	0.0	0.0
Low Salinity Brine-3	0.0	0.0	0.0171	0.0
Low Salinity Brine-4	0.0034	0.0	0.0	0.0046

Suggested mechanism

Proposed mechanism for low salinity EOR effects. Upper: Desorption of basic material. Lower: Desorption of acidic material. The initial pH at reservoir conditions may be in the range of 5 - 6.5

Chemical equations

- Desorption of cations by LS water (slow) $- \text{Clay-Ca}^{2+} + \text{H}_2\text{O} = \text{Clay-H}^+ + \text{Ca}^{2+} + \text{OH}^- + \text{heat}$
- Wettability alteration (fast)
 - Basic material
 - Clay-NHR₃⁺ + OH⁻ = Clay + R₃N: + H₂O
- Acidic material (fast)
 - Clay-RCOOH + OH⁻ = Clay + RCOO⁻ + H_2O

Active species versus pH

 The pK_a values of protonated base and carboxylic acid are quite similar, pK_a≈ 4.5

 $- BH^+ \leftrightarrow H^+ + B$

 $- \text{ RCOOH} \leftrightarrow \text{H}^+ + \text{ RCOO}^-$

 The concentration of the active species (BH⁺, and RCOOH) will have a similar variation versus pH.

Clay minerals

- Clays are chemically unique
 - Permanent localised negative charges
 - Act as cation exchangers
 - General order of affinity:

Li⁺ < Na⁺ < K⁺ < Mg²⁺ < Ca²⁺ << H⁺

 Kaolinite and Illite are regarded as nonswelling clays

Adsorption of basic material Quinoline

Burgos et al. *Evir. Eng. Sci.,* **19,** (2002) 59-68.

Swelling (2:1 clay, similar in structure to

Montmorillonite

Nonsweeling(1:1 Clay)

illite/mica)

Kaolinite

15

Kaolinite: Adsorption reversibility by pH

Quinoline Samples 1-6: 1000 ppm brine. Samples 7-12: 25000 ppm brine

Adsorption of acidic components onto Kaolinite

Adsorption of <u>benzoic acid</u> onto kaolinite at 32 °C from a NaCl brine (Madsen and Lind, 1998)

pH _{initial}	Γ _{max} μmole/m ²
5.3	3.7
6.0	1.2
8.1	0.1

Increase in pH increases water wetness for an acidic crude oil.

LS water increases oil-wetness

Adsorption of Quinoline vs. pH at ambient temperature for LS (1000 ppm) and HS (25000 ppm) fluids.

Ref. Fogden and Lebedeva, SCA 2011-15 (Colloids and Surfaces A (2012) Adsorption of crude oil onto kaolinite

It is not a decrease in salinity, which makes the clay more water-wet, but an increase in pH

Lower initial pH by CO₂ increses the low salinity effect

Core No.	S _{wi} %	T _{Aging} ° C	T _{Floodin} ° ^g C	Oil	LS brine	Formation Brine
B18	19.7 6	60	40	TOTAL Oil Saturated With CO₂ at 6 Bars	NaCl: 1000 ppm	TOTAL FW 100 000 ppm
B14	19.4	60	40	TOTAL Oil	NaCl:1000 ppm	TOTAL FW 100 000 ppm

 $CO_2 + H_2O \leftrightarrow H_2CO_3 + OH^- \leftrightarrow HCO_3^- + H_2O_{19}$

Small LS EOR effects after flooding with SW

Morrow et al. (2012) SPE 154 209 Torrijos et al. (2015) SPE 179625-MS

FW = SW : 35 604 ppm;Ca²⁺ 13 mM; LS: 20x diluted SW Oil: AN= 1.46 and BN = 2.49 mgKOH/g T_{res} = 60 °C

Core plug sample	Kaolinite (Mass %)	Clays & micas (Mass %)	Albite (Mass %)	Microcline (Mass %)	∆ R _t ** %OOIP	Initial pH	∆pH
Briar Hill	4.5	4.5	0	2.5	3.65	7.0	0
Idaho Gray	6.0	6.9	29	22	3.05	7.3	0.5*
Leopard	2.5	3.7	0,5	1.2	1.05	7.2	0.5*
Cedar Creek	5.0	8.6	7,5	8.0	0.74	6.6	0.5
Boise	5.0	5.7	29	22	1.09	7.2	1*
Sister Gray	7.0	7.6	1.4	7.0	0	8.0	0

Table 3. Detailed mineralogy, tertiary recovery, initial pH and Δ pH.

** ΔR_t : Amount of oil recovered in the tertiary LS EOR process, (ref: SPE 154209) * The pH increment was not stable during the LS flooding (decreasing trend).

<u>∆pH versus LS EOR effect</u>

Fig. 5. pH screening for an Idaho gray core at 60 °C, flooding sequence SW-LS_{d20}-SW.

Fig. 7. pH screening for a Cedar creek core at 60 °C, flooding sequence SW-LS_{d20}-SW. LS EOR effect:0.74

Fig. 6. pH screening for a Boise core at 60 °C,

flooding sequence SW-LS_{d20}-SW.

Effect of FW salinity

Fig 8. Oil recovery for a Cedar creek core at 60 °C, flooding sequence FW-LS-FW. LS EOR effect: **5% of OOIP**

PS!! Difficult to obtain tertiary LS EOR effects after flooding with SW.

Effect of Reservoir Temperature on the Tertiary LS EOR Potential

Relationship: T and <u>ApH</u>

(Aksulu et al. Energy & Fuel 26 (2012) 3497-3509)

Wettability alteration of clay by LS water:

Clay-Ca²⁺ + H₂O \leftrightarrow Clay-H⁺ + Ca²⁺ + OH⁻ + heat

- Desorption of active cations from the clay surface is an exothermic process, Δ H<0.
 - Divalent cations (Ca²⁺, Mg²⁺) are strongly hydrated in water, and as the temperature increases the reactivity of these ions increases, and the equilibrium is moved to the left.
 - The change in pH will decrease as the temperature increases.
 - Dissolution of anhydrite, $CaSO_4(s)$, will move the equilibrium to the left.

Gamage, P., Thyne, G. Systematic investigation of the effect of temperature during aging and low salinity flooding of Berea sandstone and Minn, 16th European Symposium on Improved Oil Recovery, Cambridge, UK, 12-14 April, 2011.

Temperature – pH screening

Desorption of Ca²⁺ slow process Adsorption of Ca²⁺ fast process

PS! LS brine only contained NaCl

Reservoir minerals

Reservoir minerals minerals that can affect the equilibrium:

Clay-Ca²⁺ + H₂O \leftrightarrow Clay-H⁺ + Ca²⁺ + OH⁻ + heat

Presence of Anhydrite

- Reservoirs at high T_{res} and salinity my contain Anhydrite, CaSO₄(s)
- Offshore reservoirs at high T_{res} and salinity flooded by SW may also contain precipitated Anhydrite, CaSO₄(s)

<u>Yme RC1: pH – HS – LS scan</u>

Brines: HS2: 100 000 ppm (CaCl₂ and NaCl) LS2: 1000 ppm (NaCl)

Presence of anhydrite in reservoir core

Plagioclase as reactive reservoir mineral

- Anionic poly silicate (Feltspar type), which is charged balanced mainly with Al³⁺, but also with Ca²⁺ or Na⁺.
- Albite, NaAlSi₃O₈, is a common member of the Plagioclase group. Na⁺ can be exchangeable with H⁺ which will have impact on the pH of the brine.

Chemical equilibrium: Albite as example

(Aksulu et al. *Energy Fuels* **2012**, *26*, 3497-3503).

- Chemical equilibrium:
 - $NaAlSi_3O_8 + H_2O \leftrightarrow HAlSi_3O_8 + Na^+ + OH^-$
- Initial FW conditions
 - Low saline FW (Alkaline solution pH>7)
 - Equilibrium moved to the right
 - High saline FW (May have acidic solution pH<7)
 - Equilibrium moved to the left, i.e. no cation exchange
- Impact on initial wetting conditions and the potential for LS EOR effects
- Hydrolysis of Albite is not very sensitive to temperature (small hydration energy of Na⁺)

Outcrop: pH-HS-LS scan

PS!! ΔpH not sensitive to the temperature due to Eq. (1):

(1) NaAlSi₃O₈ + H₂O
$$\leftrightarrow$$
 HAlSi₃O₈ + Na⁺ + OH⁻
(2) Clay-Ca²⁺ + H₂O \leftrightarrow Clay-H⁺ + Ca²⁺ + OH⁻ + heat

Snorre field

(Reinholdtsen, et al. 16th European EOR Symp., Cambridge, UK,12-14 April, 2011.)

- Lab work
 - Negligible tertiary low salinity effects after flooding with SW, on average <2% extra oil.
 - $T_{res}=90 \ ^{\circ}C$
- Single well test by Statoil
 - Confirmed the lab experiments
- Question:
 - Why such a small Low Salinity effect after flooding Snorre cores with SW ?

New study at UoS: Lunde formation

	Table	1.	Mineral	composition
--	-------	----	---------	-------------

Core	Quartz [wt%]	Plagioclase	Calcite [wt%]	Kaolinite [wt%]	Illite/mica [wt%]	Chlorite [wt%]
13	28.2	32.1	1.4	2.6	9.3	3.6
14	36.0	35.2	2.4	3.9	7.4	2.9

Table 5. Properties of the oil.

AN	BN	Density (20°C)	Viscosity (30°C)	Viscosity (40°C)
[mgKOH/g oil]	[mgKOH/g oil]	[g/cm ³]	[cP]	[cP]
0.07	1.23	0.83653	5.6	4.0

- Salinity of FW: 35 000 ppm
- PS!! The oil was saturated with CO_2 at 6 bar.
- The core was flooded FW diluted 5x and the pH of the effluent stayed above 10.
- Plagioclase/Albite can give initial alkaline solution: pH>7

Snorre (Lunde) Core 13

CO₂ was added

- Low salinity EOR effect of about 3 % of OOIP with SW
- Initially, too water wet , pH>7, for obtaining LS EOR effects

Excellent LS EOR conditions

(Quan et al. IEA EOR Symposium 2012, Regina, Canada)

Minerals: Plagioclase \approx 22%, Total clay \approx 25% (mostly Illite and kaolinite) FW: Ca²⁺: 0.061 mole/l, **Total salinity 57114 ppm** T_{res} = 65 °C k = 1-2 mD, Φ =0.11

Outcrop core containing Albite

(Torrijos et al. (2015) Paper under review)

Core properties: Total clay: 10 wt%; Albite: 33 wt% Brines: HS 100 000 ppm (Ca²⁺ and Na⁺); LS 1000 ppm (NaCl) LS EOR effect: 60 °C 9.1 and 120 °C 8.7 %OOIP pH gradient very similar at 60 and 120 °C

Figure 4. Oil recovery test at 60° C and 120° C

Figure 3. pH Increment during the oil recovery test, flooding sequence Total FW-LS-LS High rate.

Response time for the LS EOR effect

(Torrijos et al. Energy & Fuels (2016) accepted)

- More than 500 papers are published on LS EOR effects in sandstone.
- Field applications: very few, Why ????
- Tertiary LS EOR effect
 - Varying LS EOR effect: usually between 0 10% OOIP
 - Very long response time
 - Many PVs of LS brine must be injected to reach 5-10% extra oil
- Secondary LS EOR effect
 - Usually larger EOR effect
 - Much shorter response time
 - Extensive lab work is needed to verify the effect.

Test conditions

Table 2. Mineralogical properties of the outcrop cores, given as wt %.

Quartz	Albite	Chlorite	Illite	Anatase	Apatite	Calcite	Pyrite
57.0	32.0	1.7	8.2	0.5	0.2	0.3	0.1

Table 3. Crude oil properties.

Crude Oil	AN	BN	Density*	Viscosity*
	(mg KOH/g)	(mg KOH/g)	(g/cm³)	(cP)
Total oil	0.10	1.80	0.846	17.6

HS= FW: 100 000 ppm (CaCl₂ and NaCl) LS: 1000 ppm NaCl Test temperature: 60 °C

pH scan: FW-LS-FW

TOTAL outcrop B series: Important minerals: Illite clay and Plagioclase/Albite $Clay-Ca^{2+} + H_2O \iff Clay-H^+ + OH^- + Ca^{2+}$ LS brine: $NaAlSi_{3}O_{8} + H_{2}O \iff HAlSi_{3}O_{8} + OH^{-} + Na^{+}$ HS brine: $Clay-H^+ + Ca^{2+} \leftrightarrow Clay-Ca^{2+} + H^+$ $HAISi_{3}O_{8} + Na + \leftrightarrow NaAISi_{3}O_{8} + H^{+}$ 10 LS FW FW 9 8 Hd 7 6 +FW-pH +LS-pH 5

Fig. 2. pH scan at 60 °C for core B-21. Flooding sequence: FW-LS-FW. Flooding rate: 4 PV/D

20

24

28

12 16 PV Injected

8

0

4

Tertiary LS EOR effect

Fig. 1. Oil recovery test from core B-21 at 60 °C. The core was successively flooded with FW-LS at 4 PV/D, at the end the injection rate was increased to 16 PV/D.

Mechanism for oil displacement

Fig. 3. Oil recovery test for core B-24 at 60 °C. The core was successively flooded with FW-LS (2PVs) - FW - LS at 4 PV/D, at the end the injection rate was increased to 16 PV/D.

Pore size distribution

Fig. 6. Pore size distribution of a core from the same block as the tested core material. Data submitted by TOTAL E&P. The core material has heterogeneous pore size distribution, with pores ranging from ~0.01 to 100 μ m. The majority of the pores is in the range of 10 μ m.

Secondary LS EOR effect

Fig. 7. Oil recovery test from core B-26 at 60 °C by <u>secondary injection of LS</u> brine. a) First restoration (left) b) Second restoration of core B-26 after mild cleaning with LS in secondary mode followed by a LSP flood (right).

The secondary LS EOR effect increased by 10% of OOIP compared to tertiary LS injection.

PS!! Restructuration of residual oil saturation after a secondary LS flood can have great effect on oil displacement using LS polymer or LPS, even when the LS EOR effect is small

Modelling

Electrostatics and low salinity effect in sandstone reservoirs.

Brady, Morrow, Fogden et al. *Energy & Fuels 2015, pp.* 666-677.

PS! Induced pH gradient was incorporated in the modelling for the first time.

Smart Water in Carbonate

Wetting properties in carbonates

- Carboxylic acids, R-COOH
 - AN (mgKOH/g)
- Bases (minor importance)
 - BN (mgKOH/g)
- Charge on interfaces
 - Oil-Water
 - R-COO-
 - Water-Rock
 - Potential determining ions
 - Ca²⁺, Mg²⁺,
 - (SO₄²⁻, CO₃²⁻, pH)

Impact of AN on spontaneous imbibition

(Standnes and Austad, J. Pet. Sci. Eng. 28 (2000) 111-121)

Seawater as Smart EOR fluid in carbonates

Questions asked

- Why is injection of seawater such a tremendous success in the fractured Ekofisk field? T_{res} = 130 °C
- Can SW act as a wettability modifier in chalk at high temperatures?

Model brine composition

Comp.	Ekofisk	Seawater	
	(mole/l)	(mole/l)	
Na⁺	0.685	0.450	
K⁺	0	0.010	
Mg ²⁺	0.025	0.045	
Ca ²⁺	0.231	0.013	
Cl-	1.197	0.528	
HCO ₃ - SO ₄ ²⁻	0	0.002	
SO ₄ ²⁻	0	0.024	

Potential determining ions

(Zhang and Austad, Coll. and Surf. A 279 (2006) 179-187)

- Fig.2 Zeta potential measurements on an aqueous chalk suspension system by adding SO_4^{2-} or Ca^{2+} (pH = 8.4). Initially 4wt% milled chalk powders were mixed with brine ZP.
- **Fig.3** Zeta potential measurements on a aqueous chalk suspension system (pH=8.4) by varying $[SO_4^{2-}]$ (keeping $[Ca^{2+}]=0.013$ mole/l) or varying $[Ca^{2+}]$ (keeping $[SO_4^{2-}]=0.012$ mole/l). Initially 4wt% milled chalk powders were mixed with brine ZP at room temperature.

Effect of Sulfate in SW

- •Crude oil: AN=2.0 mgKOH/g
- •Initial brine: EF-water
- •Imbibing fluid: Modified SW (SO₄²⁻: 0-4x SW conc.)
- •Spontaneous imbibition at 100 °C

Effect of Ca²⁺ in SW

Crude oil: AN=0.55 mgKOH/g

- Imbibing fluid: Modified SW
- T = 70 °C

Co-Adsorption of SO₄²⁻ and Ca²⁺ vs. Temperature

Method:

- Core saturated with SW without SO₄²⁻
- 2. Core flooded with SW spiked with SCN⁻ (Chromatographic separation of SCN⁻ and SO_4^{2-})

Affinities of Ca²⁺ and Mg²⁺ towards the chalk surface

NaCI-brine; [SCN⁻] = [Ca²⁺] = [Mg²⁺]= 0.013 mole/l

 $CaCO_{3}(s) + Mg^{2+} = MgCO_{3}(s) + Ca^{2+}_{56}$

Effects of potential determining ions and temperature on spontaneous imbibition

Zhang et al. Colloids and Surfaces A: 301 (2007) 199-208)

Suggested wettability mechanism

Zhang et al. Colloids and Surfaces A: 301 (2007) 199-208)

Can SO₄²⁻ compensate for low T_{res}? (Zhang and Austad Colloids and Surfaces A: 279 (2006) 179-187)

Maximum oil recovery from chalk cores when different imbibing fluids were used (SW with varying SO_4^{2-} conc.). Oil: AN=2.07 mgKOH/g).

lon composition of brines

Molar compositions (mole/l) of PW/SSW-mixtures for Ekofisk

	SSW	PW*	FW*
HCO ₃ ⁻	0.002	0.008	0.004
Cľ	0.525	0.765	1.423
SO ₄ ²⁻	0.024	0.007	0.000
Mg^{2+}	0.045	0.021	0.022
Ca ²⁺	0.013	0.049	0.100
Na ⁺	0.450	0.635	1.156
K ⁺	0.010	0.007	0.007
Ba ²⁺	0.0E+00	8.2E-06	0.002
Sr ²⁺	0.0E+00	2.2E-03	0.009
Li ⁺	0.0E+00	9.8E-04	0.000
Ionic strength	0.657	1.150	1.559
TDS (g/l)	33.39	45.81	83.09

* Data received from ConocoPhillips, Norway.

Ion composition in PW from Ekofisk

PW contained 73.6 vol% SW and 26.4 vol%FW

T_{res}=130 °C

Question

Can SW be improved as a wettability modifier?

"Modified SW" as EOR-fluid

Fathi et al. Energy & Fuels: 24 (2010) 2514-2519; 25 (2011) 5173-5179)

Spontaneous imbibition: T_{res}=90 °C; Crude oil AN=0.5; S_{wi}=10%

- Formation water: VBSeawater: SWSeawater depleted in NaCI
- •Seawater depleted in NaCl and spiked with 4x sulfate

Chromatographic wettability test

Chromatographic wettability analysis after spontaneous imbibition at 90°C by using formation brine, the cores was saturated with Oil–B with acid number of 0.5 mgKOH/g.

Relationship: Wettability-Oil recovery

Relationship between oil recovery and water–wet fraction of the rock surface <u>after spontaneous imbibition</u> with VB, SW, SW0NaCl, and SW0NaCl– $4SO_4^{2-}$ at 90 °C.

"Smart Seawater" in Chalk

EOR-potential by "Smart Seawater" (depleted in NaCl) in Ekofisk may increase recovery by 10 % of OOIP.

Effect of Salinity and Ion concentration

The access of potential determining ions to the calcite surface is affected by the concentration of non active ions in the double layer

Effects of NaCl and SO₄²⁻

(Puntervold et al. JPSE: 133 (2015) 440-443)

Forced displacement from reservoir limestone core

Fig. 5. Oil recovery by forced displacement from the composite core, Core 2 and Core 3. Successive injection of FW-0S, SW and SW-0NaCl. T_{test} : 100°C; Injection rate: 0.01 ml/min (≈ 0.6 PV/D).

North Sea Chalk Fields

- Suggestions
 - Upper Ekofisk most oil-wet.(130 °C, not flooded ??)
 - Injection of SW depleted in NaCl could increase recovery in the range of 10% of OOIP compared to SW.
 - Valhall (90 °C)
 - Injection of SW depleted in NaCl and spiked by SO₄²⁻ can increase the recovery significantly compared to SW (20% of OOIP).
 - Involve service companies to make modified SW cheaply by membrane technology.

Is dissolution of chalk a mechanism for wettabilit alteration???

Hiorth, A.; Cathles, L. M.; Kolnes, J.; Vikane, O.; Lohne, A.; Madland, M. V. *A chemical model for the seawater-CO₂-carbonate system - Aqueous and surface chemistry*, Paper SCA2008-18 presented at the International Symposium of the Society of Core Analysts, Abu Dhabi, U. A. E., 29 Oct - 2 Nov, 2008.

Austad, T.; Strand, S.; Puntervold, T. *Is wettability alteration of carbonates by seawater caused by rock dissolution?*, Poster SCA2009-43 presented at the International Symposium of the Society of Core Analysts, Noordwijk, The Netherlands, 27-30 September, 2009.

Mahani, H.; Keya, A. L.; Berg, S.; Bartels, W.-B.; Nasralla, R.; Rossen, W. *Driving Mechanism of Low Salinity Flooding in Carbonate Rocks*, Paper SPE 174300 presented at EUROPEC 2015, Madrid, Spain, 1-4 June, 2015. 10.2118/174300-MS.

Low salinity EOR-effects in carbonates: What is the condition?
Low salinity EOR-effects in carbonates

SPE 137634 Ali A. Yousef et al. (Saudi Aramco)

Presence of CaSO₄

Concentration profiles of Ca²⁺, Mg²⁺, and SO₄²⁻ when flooding reservoir limestone core with DI water, after aging with FW. T_{test} : 100°C, Injection rate: 0.1 ml/min.

Codition for observing low salinity EOR-

effects in carbonates

Austad et al. Energy & Fuels 26 (2012) 569-575)

- The carbonate rock must contain anhydrite, CaSO₄(s)
- Chemical equilibrium: $CaSO_4(s) \leftrightarrow Ca^{2+}(aq) + SO_4^{2-}(aq) \mapsto Ca^{2+}(ad) + SO_4^{2-}(ad)$
- The concentration of $SO_4^{2-}(aq)$ depends on:
 - Temperature: Decreases as T increases
 - Brine salinity/composition: Decreases as Ca²⁺ concentration increases
- Wettability alteration process:
 - Temperature: (increases as T increases)
 - Salinity: (increases as NaCl conc. decreases)
- Is it an optimal temperature window?
 - 90-110 °C ?

FW: Low salinity EOR-effect

(Austad et al.: Energy & Fuels 2015)

Oil recovery by forced displacement from a reservoir limestone core containing anhydrite. Successive injection of FW, and 100× diluted FW. T_{test} : 100°C. Injection rate: 0.01 ml/min (≈1 PV/D).

Simulated dissolution of $CaSO_4(s)$ when exposed to FW-0S, 10× and 100× diluted FW at different temperatures.

SW: Low salinity EOR in Carbonates

Diluted FW and SW as EOR fluid

Table 5 The relationship between extra oil recovery and effluent concentration of sulfate and NaCl under tertiary water flood using 100x dil. FW-0S, SW, 10x and 30x diluted SW, after the core was first flooded with FW-0S. T=100 °C.

	FW-0S	100× dil. FW-0S	SW	10× dil. SW	30× dil. SW
Extra oil (%	-	22	5	5	18
of OOIP)					
Sulfate (mM)	2.8	5.3	10	7.5	4
NaCl (mM)	2580	25.8	796	79.6	26.6
Salinity (ppm)	213000	2130	57760	5776	1925

Anhydrite: Impact on Initial wetting condition

Farzad et al. *Energy & Fuel* 25 (2011) 3021-3028

$CaSO_4(s) \leftrightarrow Ca^{2+} + SO_4^{2-}(aq) \leftrightarrow CaCO_3(s) - SO_4^{2}(ad)$

Table 2. Equilibrium between $SO_4^{2-}(aq)$ and $SO_4^{2-}(ad)$ at different temperatures, when VB-2 (2 mM SO_4^{2-})was used as formation water

Temp.	SO ₄ ²⁻ (aq)	SO ₄ ²⁻ (ad)	$SO_4^{2-}(aq)+SO_4^{2-}(ad)$	SO ₄ ²⁻ (aq)/ SO ₄ ²⁻ (ad)
°C	mg	mg	mg	
20	1.6	3.0	4.6	0.69
50	1.4	3.1	4.5	0.53
90	0.36	3.4	4.0	0.26
130	0.03	2.8	2.9	0.10

Quantification of $SO_4^{2-}(aq)$ and $SO_4^{2-}(ad)$

and sulfate adsorbed onto the rock at different temperature. The cores was saturated and aged at elevated temperatures in VB-2 and then flooded at the same temperature with DI water. Injection rate: 0.2 ml/min.

Fig. 13. Relative amount of sulfate dissolved in the pore water and sulfate adsorbed onto the rock at 130 °C and room temperature using 10 times diluted VB-2. The core was flooded with DI water. After switching to room temperature, the core was aged for 3 days prior to further flooding with DI water. Injection rate: 0.2 ml/min.

Anhydrite: Impact in Initial wetting and oil recovery

VB-1=VB-2: 2 mM SO₄²⁻ VB-3 : 17 mM SO₄²⁻

Recent work

- Patrick et al. (*J. Pet. Sci. Eng. 2012*)
 - Modelling showed that SO₄²⁻ protected actitve Ca²⁺-sites on carbonate from beeing adsorbed by carboxylic material.
- Zeng et al. (Enery & Fuels 2012)
 - Experimental verification that SO₄²⁻ decreased adsorption of carboxylic acids onto calcium carbonates.
- ShamsiJazeyi et al. Colloids and Surfaces A. (2014 ??)
 - Used polyacrylate as sacrificial agent to lower adsorption of anionic surfactant.
 - Functioned badly when anhydrite was present
 - Sulfate prevented adsorption of polyacrylate onto the rock

<u>Modelling of oil recovery by</u> <u>wettabily alteration</u>

- The Univ. of Texas at Austin.
 - Al-Shalabi, Sepehrnoori, Pope, Mohanty, J. Pet. Sci. Eng. (2014?)
 - Termed their model: LSWI Fundamental Model for Carbonates
 - Modelled data from Yousif and Mohanty successfully
 - The model incorporates wettability alteration effect through contact angle and trapping parameter, which are supposed to be dictated only by salinity.
 - Thus, changes in parameters like P_c , k_{ro} , k_{rw} , are linked to salinity gradients only.
- This <u>is not</u> a fundamental understanding of the mechanism. The model must contain:
 - Interaction between carboxylic material and the rock surface
 - Impact of specific ions, Ca²⁺, SO₄²⁻, Mg²⁺
 - Impact of temperature
 - Dissolution of Anhydrite, CaSO₄.

<u>Modelling of oil recovery by</u> <u>wettabily alteration</u>

- Pennsylvania State Univ.
 - Qiao, Li, Johns, Xu, SPE 170966 (2014)
- Some comments
 - The model was based on our understanding of the chemical mechanism.
 - The use of advanced geochemical models is not the best tool for modelling EOR effects by wettability modification.
 - Salinity should not be a single factor for the efficiency of chemically tuned water.
- Recent work: SPE-175018-MS
 - Modelling LS EOR effects; Dissolution of Anhydrite, CaSO₄.

Conceptual model used

Slide 5

Chemical equilibria used

Slide 6

Methodology: Representative Reactions

Number	Reactions	*log <i>K_{eq}</i>				
Oil-water interface reactions						
1	$-COOH \leftrightarrow -COO^- + H^+$	-3.98				
2	$-COOH + Ca^{2+} \leftrightarrow -COOCa^{+} + H^{+}$	-2.20				
3	$-COOH + Mg^{2+} \leftrightarrow -COOMg^{+} + H^{+}$	-3.30				
Solid-water interface reactions						
4	$> CaOH + H^+ \leftrightarrow > CaOH_2^+$	9.81				
5	$> CaOH_2^+ + SO_4^{2-} \leftrightarrow > CaSO_4^- + H_2O$	3.30				
6	$> CaOH_2^+(-COO^-) \leftrightarrow > CaOH_2^+ + -COO^-$	-5.40				
Aqueous phase reactions						
7	$H_20 \leftrightarrow H^+ + 0H^-$	-12.25				
8	$HCO_3^- \leftrightarrow H^+ + CO_3^{2-}$	-10.08				
9	$H_2CO_3 \leftrightarrow H^+ + HCO_3^-$	-6.39				

K₆ is adjusted to match the base case.

Society of Petroleum Engineers Annual Technical Conference and Exhibition

170968 · A Mechanistic Model for Wettability Alteration · Changhe Qiao

Dolomite

- Does Dolomite respond like calcite towards Smart Water ?
- The affinity between R-COO⁻ and Ca²⁺ and Mg²⁺ is a factor of 10 in favour of Ca²⁺

Dolomite outcrop: Affinity of Sulfate

Fig. 7. Surface reactivity test on outcrop dolomite rock. The core SIL#7 was equilibrated with SW0T prior to SW½T injection at a rate of 0.1ml/min. The affinity of SO_4^{2-} towards rock surface was chromatically verified at 20 and 130 °C.

Oil recovery by SI

Fig. 9. Oil recovery from dolomite cores SIL#6 and SIL#9 by using FW, S_{wi} =0.15; salinity 222 000 ppm, as formation water. Oil 3 with AN=0.52 mgKOH/g was used. The cores were spontaneous imbibed at 70°C, with FW, SW and d_{10} SW.

Review papers available

Water based EOR from Clastic Oil Reservoirs by Wettability Alteration: A Review of Chemical Aspects. JPSE 2016, Tina Puntervold, Skule Strand, Tor Austad

"Smart Water" EOR Effects in Carbonates: A Chemical Review of Wetting Properties and Oil Recovery.

To be submitted to JPSE, Tina Puntervold, Skule Strand, Tor Austad

Request of pdf files to : tina.puntervold@uis.no skule.strand@uis.no

Acknowledgement

Statoil, ConPhil, NFR Total, Talisman, BP, Maersk, Shell, Saudi Aramco, **DNO** International.

Smart Water EOR

Smart Water injection could improve oil recoveries by 10 - 50 % and significant reduce reservoir and production scale

In Carbonate:

In Sandstone:

IOR Aqua AS in collaboration with University of Stavanger, Norway, offers:

- Screening of Smart
 Water EOR potential in
 Sandstone or Carbonate
 reservoirs
 - Desk evaluation of Smart Water EOR potential
 - Core screening tests evaluating Smart
 Water EOR potential
 - Oil Recovery tests evaluating Smart Water EOR potential
 - Optimization of injection water composition

For further information:

- Skule Strand, <u>skule.strand@uis.no</u>, +4790721585
- Tor Austad, <u>toraustad44@gmail.com</u>, +4791348510
- Tina Puntervold, <u>tina.puntervold@uis.no</u>, +**Pf99%12%52**
- «Prisverdig krittgjennombrudd» -Morten Lerbrekk Morten Lerbrekk Morten Lerbrekk@tyrfing.no, +4795052663 journal, nr. 2, 2011
- Strand, S., Puntervold, T. and Austad, T. 2016. Water based EOR from clastic oil reservoirs by wettability alteration: a chemical evaluation. *Journal of Petroleum Science and Engineering* (accepted).
- RezaeiDoust, A., Puntervold, T. and Austad, T. 2011. Chemical verification of the EOR mechanism by using low saline/smart water in sandstone. *Energy* & *Fuels* **25**: 2151-2162.
- Puntervold, T., Strand, S., Ellouz, R. and Austad, T. 2015. Modified seawater as a smart EOR fluid in chalk. *Journal of Petroleum Science and Engineering* **133**: 440-443.

BP: Endicott field test SPE 129692

Background data

- Clay content ranged from a few to 20 wt%
- Kaolinite dominated followed by Illite
- Average permeability: 1400 mD
- Average porosity: 22%
- Initial oil saturation: 95%
- Injection of HS brine: S_{or} =41%
- Tertiary LS brine injection: S_{or} =27%
- Increased LS EOR displacement efficiency: 26%

Endicott two well field test observations

- LS EOR effect: 10% of total PV in swept area
- Produced water observations:
 - Increase in alkalinity, i. e. HCO_3^-
 - $CO_2(g) + H_2O \leftrightarrow [H_2CO_3] \leftrightarrow H^+ + HCO_3^-$
 - $H^+ + OH^- = H_2O$
 - Decrease in $H_2S(g)$
 - $H_2S + OH^- \leftrightarrow H_2O + HS^-$
 - Increase in Fe²⁺
 - $FeS(s) + OH^{-} \leftrightarrow [FeOH]^{+} + S^{2-}$ $K_1 = 10^{5.7}$
 - Decrease and increase in Mg²⁺

Solubility of Mg(OH)₂ vs. pH

Fig. 11. Schematically change in Mg^{2+} concentration in the produced water during a low salinity flood. The concentration of Mg^{2+} is suggested to be quite similar for the initial FW and low saline brine.

Modeling solubility of $Mg(OH)_2$ and $Ca(OH)_2$ versus pH at 50 and 100 °C in a 50 000 ppm NaCl brine and 6 bars.

Mg²+: 10-3 M, 100 °C:At pH< 8:</td>No precipitation of Mg(OH)2At pH >8:Precipitation:Mg²+ + 2OH- = Mg(OH)2(s)HS brine:Clay-H+ + Ca²+ = Clay -Ca²+ + H+Mg(OH)2 + 2H+ = Mg²+ + 2 H2O

BP: Clare Ridge LS EOR prospect

Upstream Technology, Q1 2013

- Investments: \$ 7.3 billions
- On steam 2016, oil production up to 120 000 bbl/D at peak
- Reversed osmosis desalt capacity: 45 000 bbl/D
- Estimated oil recovery
 - Flooding with SW: 640 millon bbl
 - Additional 42 million bbl by LS EOR, i. e. 6.6% extra oil.
 - Cost: \$ 3 per bbl of extra oil compared to about 20 for other EOR techniques.