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Dlg ital Subsurface Digitalisation &innovation

Potential

R&T strategic project in collabora

Value creation producing fields?!

Above 2 bn USD
6. Process digitalisation

1. Digital safety,
> Y & commercial insight

security & sustainability
Cognitive safety for
operational planning

2. Subsurface analytics

Automated drilling — cost?

/ Around
Robotic process automation
= 15 %

5. Data driven operations Field of the future — capex®

\ Around
Subsurface data Integrated operation centres
lake and experience platform US and NCS - 3 O (y
0
3. Next generation
well delivery / 4 Field of the future Integrated remote operations US Onshore

Digital well planning and automated
drilling control

Around 50 O million USD

Added value?

1. 3%increase in production—2020 to 2025.Statoilshare pre-tax.

2. Automated drilling compared to conventional.

3. New facility concept compared to conventional.

4. NPVincrease based onthe productionand opexeffects ofthe integrated
controlrooms.
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Cuttings Images

IR B

s AT ot
yi AN

- Usuallythe only person to see drillcuttings has
been the Operations Geologist on the rig

- Textualdescriptionsare made and samples put
into storage

- Photographing cuttings samples gives us access
to a newdata source

- With a photo every 3-10 mdrilled,in each of our
wells, this can quickly overwhelm human analysis
capacity

- CanDeep Learning provide a way to focus the
analysis?

Seismic : Dutch F3 dataset

3 | Cuillin Internal 15 June 2018
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Deep Learning LHEN A USER TAKES A PHOTD
_ _ THE APP SHOULD CHECK WHETHER
Recentadvances in the field of Deep NeuralNetworks mean theyare now THEY'RE IN A NATIONAL PARK ...
able to tackle much more challenging problems than ever before. SURE, ERSY GIS (0OKUR
GIMME A FEW HOURS.
To understand whether it can add value with this data,we need to know: ... AND CHECK WHETHER
T!-EPHDTDI&OFHBRR
ItLNEED#ﬁE.sE“ﬁs-r

Whatis Deep Learning?

What canwe do with it?

What cantwe do with it?

AGP ME
A

IN CS, IT CAN BE HARD TO EXPLAIN

THE DIFFERENCE BETWEEN THE EASY
AND THE VIRTUALLY IMPOSSIBLE.

What do we need to do it?

xkcd.com :24/09/2014

4 | Cuillin Internal 15 June 2018
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Strengths & Weaknesses
- Surprisinglyaccurate at analysing data « Huge computational requirements
. Takescare of feature engineering  Needsverylarge volumes ofdata,and easy to overfit

* Classifiers are forcedto give an answer

Faster to digest new data than humans _
 'Black-box"makes it hard to understand what’s

happening..situation improving

Can use on almost any type of data

IMAGENET
Accuracy Rate
100%
o |
. l ’

80%
70% ) . H

] ' !
60% ] ™

[ L]
50% ®

- L
4o !
30% I i
20% 3 »

o (a) Husky classified as wolf (b) Explanation
1
® Traditional CV = Deep Learning Ribeiro. M et. al. 2016
m L - 1]
2010 2011 2012 2013 2014 2015 "Why Should | Trust You" Explaining the Predictions of Any Classifier
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Can we just Google this?

The Google Cloud Plaform provides a
"Cloud Vision API"
https//cloud.google.com/vision/

- Positive

- Easytointegrate &fairly cheap

- Negative

- Doesntreally knowgeology

- Deal breaker

- Nowaytoteach it!

\7 4

equinor -

-

™) Google Cloud Platform

Web Entities

Gravel
Pebble
Limestone

Web Entities

Gravel

Soil

Pebble

Rock
Igneous rock

0.82962
0.58327
0.57504

0.84898
0.65864
0.5%017
0.5899

0.57595

7 | Cuillin
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Neural Networks — in one slide!

« ANeuralNetworkis the connection of:
- Inputdata =>» Artificialneurons =» Output data

« Fully-connected layers:
« Neurons perform operation on whole previous layer
- Convolutionallayers (ina CNN):

« Neurons perform operation on selected areas of previous layer

« The operations ofthe neurons are defined by |ayer WQ/Q/?I‘S Interactive demo at: http://scs.ryerson.ca/~aharley/vis/conv/flat.ntml
Google for "aharley"

- Good weightsare discovered by a process of training
- Training data is shown to a network

- The difference between the network's guess and the actual answer is
backpropagatedthrough the network, and the weightsincrementally update

- Once a networkistrained, new examples can be givento it for /inferrence

8 | Cuillin Internal 15 June 2018


http://scs.ryerson.ca/%7Eaharley/vis/conv/flat.html

Selecting a DNN

e Larger and more complex DNNs have been

developed since AlexNet’s breakthrough in 2012

+ Their capabilities become more and more
Impressive in image classification

- Computationalpower required to train them
(generally) increases

e Selected Inception-v3 as good compromise
starting point

* Experimenting with others not hard

-

equinor -

\7 4

Inception-v4
80 1 _
Inception-v3 ResNet-152
ResNet-50 | VGG-16
751 ResNet-101
. ResNet-34
9
= 70 1 ResNet-18
-1 00"
® GooglLeNet
5 ENet
9 65 1
—
2 ° BN-NIN
" 601 5M 35M  65M - 95M  125M  155M
BN-AlexNet
55 AlexNet
50 - . v . " . . -
) 0 5 10 15 20 25 30 35 40
Convolution Operations [G-Ops]
Pooling AN ANALYSIS OF DEEP NEURAL NETWORK

Concat/Normalize

_____
s

" MODELS FOR PRACTICAL APPLICATIONS
! Canziani, Culurciello, Paszke

9 | Cuillin
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Compute power ofa GPU

* Equinor standard laptop :Inteli5 5200u
0 AVX2 (512-bit width FMA)
0 2coresx32SPops/clock@2.2GHz
» 140 Gflops

 GPU:nVidia V100 :
o Streaming Multiprocessor :64x FMA cores
0 80SMcores x128SP ops/clock@ 14GHz

* 14000 Gflops =14 Tflops
* Tensor Operations =125 Tflops

amazon

 Howto get hold of such power? webservices® /

10 | Cuillin Internal 15 June 2018



Microsoft
Azure

/

Equinor : Azure / AWS

Cuillin : Architecture

Prediction Results

-
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amazon

! Equinor : Internal
webservices™

Cuillin Predictions Browser
‘Wels v Lhoms v Cpdons T Fiea Uthoks
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| | 1
|
L eI L

sy i peSerpey VA R,

EEEE SIS S S .
_ H NS N N el NS =
‘experiment”data L
Trained Models
~1TB (current)
— 5 . 5 5§ [ o
r ot with AWS Storage prediction
Predict wit _I%L\IN Results

I regill i
I I
| Train DNN _ |
: ‘ _ m I RockWash Images W .
I Prep training dataset _ + FMB labels/logs Results Browser
| . '_ [ ~2TB (current) |
| AWS instance: i AWS Storage | AWS instance:
I - 4 V100 GPUs [ B E O

3 AR BRAN B Y.
I - 244GBRAM I il < 4GB RAM a € python

S _ 2 CPUs =
| - 32 CPUs | | c c .

1 i\ CentOS 7 2 O Jeyrorch
[ Amazon Linux [ . @)
\ )  { D NodeJS
' T & ®& § ® B §B B B B _ B B B B BN B B B B
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Cuillin : Training

1 Splitdata into training and test set (at well-level) SHEF
2. Obtain Lithology labels for each image,discarding | =
ambiguous images ERER Q! -
3. Make 45 sub-crops per image SRR .: \ 3 ciore 4
4. Use PyTorch frameworkto traina published DNN | =] (i cr
architecture to distinguish 10-15 lithology classes | = 7, o
5. Additionaltricks to improve generalization eSHiA SN
20 % ; Calcareous Claystone
2:::0 % i w Anhydrite
2500 T = Clayey Sandstone
:: 1 g € = Other
Totaldata-prep &training time: o] [§]7]
~7hourson 4xV100 GPUAWS node Ny

12 | Cuillin Internal 15 June 2018
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Cuillin : Inferrence

Datacentre:
- Inferrencing speed is crucialto deploying Deep Learning models

« With4xV100 GPUs CUILLIN can predict a lithology distribution for
over 4 cuttings images/second

- Foratypicalwellof500-1000 images this takes 2-4 minutes

Edge Cases:

- While drilling on fixed installations we canassume a good data
connectionto shore —not so for exploration scenarios

« Trained Cuillin networks could be deployed in low-power embedded
systems

14 | Cuillin Internal 15 June 2018
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Cuillin : Visualization

« Vizualizing what the networks 'see"is challenging,but important:

Deeper layers

Larger features

Predictions Voronoi diagram overlay to show spatial Selected "Max-excitation"images for
distribution of predictions across a cuttings image neurons in progressive network layers

15 | Cuillin Internal 15 June 2018
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Cuillin : Results Browser

With a rich set ofadditionaldata available alongside the image interpretation it’s easyto gain confidence in Cuillin’s interpretations,and
identify potentialnew contributions to subsurface understanding

Cuillin Predictions

[||\||||||||||\|.|.||.| \Ilﬂlll\
0N T O |[.
L =

q_L_EiM —
.Il Log Interpretation II” |II”- |

GR & ILD logs

Composﬂe of all i |mages in well

T '-.==
1' -‘_l-l-—lqll"‘“_.e.i,'i e
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Cuillin : Results Browser

With a rich set ofadditionaldata available alongside the image interpretation it’s easyto gain confidence in Cuillin’s interpretations,and
identify potentialnew contributions to subsurface understanding

Cuillin Predictions

I
3.200

Majarity
prediction

Xrf Harron

‘Camp Image

Click for full-size image

'SAND GRAINS

LIMESTONE

Predictions breakdown
for selected image

,
SILTSTONE |

SICTY CLAYETONE | CLAYSTONE
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