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Motivation
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• Objective: Ability to reliably and efficiently interpret 4D reservoir property changes 
directly from joint usage of multiple attributes and multiple seismic surveys to impact

• Reservoir management decisions
• Well Planning
• Reservoir Model Updating – impacts Long Range Planning and Forecasting

• Challenges:
• Current 4D interpretation – requires simulation and rock physics models (modeling workflows)
• 4D Seismic Inversion Difficult
• Qualitative → Semi Quantitative interpretation
• Linear workflows currently used  for a very non-linear dynamic problem

• Data Analytics Opportunity:
• Directly estimate reservoir property change maps
• Data driven workflows
• Multidimensional data integration



4D Pre-stack inversion
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Vendor Algorithm Type Inputs Outputs Reservoir
Properties 
Inversion

Joint 4D 
Inversion

Joint Amp & 
Time Shift

Contractor 1 Joint 4D 
Inversion,
Prestack

Angle Stacks,
Wavelets, 

LFM

∆AI, ∆PR,
Timeshifts,

4DLFM

Rock Physics 
template

Compaction

Multiple 
vintages

intra-reservoir 
only

Contractor 2 3D Inversion + 
Differencing, 4D 

Inversion
Prestack

Angle Stacks,
Wavelets, 

LFM

∆AI, ∆PR,
Timeshifts,

4DLFM

Rock physics 
template

Compaction – maybe

Yes No

Contractor 3 Joint 4D 
Inversion,
Prestack

Angle Stacks,
Wavelets, 

LFM

∆AI, ∆PR,
Timeshifts,

4DLFM

Rock Physics
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Compaction

Multiple 
vintages

No
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4D Synthetic Model Inversion: Δ (Acoustic Impedance) – Model vs. Inversion Results
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Complexity of 4D Interpretation: Seismic sensitivity (Prestack Integration required)
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Reservoir  
Changes

Pressure Sw Sg Compaction Net effect 
on Vp

@producers ↓ ↑ ↑ Yes ↑ or ↓

@injectors ↑ ↑ ↓ Yes ↑ or ↓

Complex Reservoir Property Changes
Property Increase Decrease

Pressure Softening Hardening

Sw Hardening Softening

Sg Softening Hardening

Production: P down, Sg upInjection: P up, Sw up

Prestack
Poststack

Prestack Seismic for P/Sat discrimination

• Integration of prestack data is critical for 
pressure/saturation discrimination

Seismic sensitivity to reservoir property changes makes 4D seismic assisted reservoir management possible

• Attributes typically used
• 4D stack amp 
• Time Strain 



Complexity of 4D interpretation: non-linear, dynamic, multidimensional
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Technical Challenges

Efficiency Challenges
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Seismic Attributes

Manual Interpretation

Qualitative
ΔPr, ΔSw
ΔSg, ΔCp4D Attributes

Current: 4D Model Based Workflow

• Manual Interpretation 1-time step at a time
• Uses Simulation and RP Models
• Lack of repeat logs for RP calibration

Direct Prediction

Simultaneous
Quantitative

ΔPr, ΔSw
ΔSg, ΔCp

3D+ 4D
Post Stack + Prestack

All time steps

Proposed: Data Driven Analytics Workflow

• Solution consistent with all available data
• Utilizes embedded physics in the data
• Uses property change from Sim model @ wells 

Predictive 
Analytics



Dynamic Reservoir Property Prediction: 4D Analytics Workflow
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Prediction Target: 4D pressure, saturations, temperature and compaction changes

Input 3D/4D seismic attributes

Wells

CREATE INPUT MAP 
DATA

SELECT INPUT AND 
TARGET DATA AT 

WELLS

TRAINING AND 
VALIDATION

PREDICTION

T1 T2 T3 TN

Injectors
Producers

Step1: 

Step2: 

Step3: 

Step4: 

Data sampling and QC

For field data application:
• Assumption: Sim model is sufficiently 

matched at the wells
• Detail QC required to assess outliers

Simulation Model

4D Synthetic 
attributes

RPM

Field Data 

Feasibility
success 

case

Target properties for all time steps

Predicted reservoir property changes



Onshore Conventional Field: Synthetic Study

9

Forward Modeled Synthetic 
Seismic

Experiment Outline:  

 Forward model 4D synthetic seismic based on a dynamic 
reservoir simulation model

 Assume knowledge of predictors (elastic/seismic 
attributes) & targets (pressures , saturations) at wells: 
ground truth

 Train and validate multiple supervised learning 
algorithms (random forest, neural nets, …)

 Test sensitivities:
- Type of predictor
- Reservoir stratigraphy
- Noise



Horizon Based Attributes
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• Synthetic seismic generated from the sim model 
• Target attributes (ΔSw, ΔSg, ΔP) related to seismic attributes

a) 4D Elastic properties (acoustic impedandance, shear impedance, 
Vp/Vs, time strain)

b) 4D Seismic attributes (stack, gradient and intercept quadrature 
amplitudes, seismic time strain,…) 

• Maps extracted and averaged over the sand intervals:

Well points extracted  100 ft intervals
Sand 1: Layers 1-8

Sand 2: Layers 10-16
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Training S/N=0  Synthetic

Validation

ΔSw ΔSg ΔPressure

ΔSw ΔSg ΔPressure

Noise Sensitivity: Training & Validation

Median importance of 
variables:
'stack‘ = 0.129 
‘grad‘ = 0.633  
‘intercept’ = 0.129  
‘t strain’     = 0.110



Noise Sensitivity: Training & Validation
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S/N=12 Synthetic
ΔSw ΔSg ΔPressure

ΔSw ΔSg ΔPressure

Training 

Validation

Median importance of 
variables:
'stack‘ = 0.177 
‘grad‘ = 0.516  
‘intercept’ = 0.163
‘t strain’     = 0.144



Sim 
Model

Noiseless Seismic 
Prediction 

S/N=12 Seismic 
Prediction 

Map Predictions Time Step 1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pressure Gas Water

D Sand Correlation Coefficients

Elastic Seismic NN Seismic SNR12Elastic Seismic-
noiseless

Seismic- S/N=12

Δ Sg Comparison

Sand1 Sand2

Validation correlation

Sand1

Sand1: Validation correlation

+
0
-

+
0
-

+
0
-



ModelModel Model

Prediction PredictionPrediction

Synthetic Seismic – Prediction Maps:   Time Step 1 changes             Sand 1

Key Highlights:
• Δ Pressure, Δ Sg excellent agreement
• Δ Sw noisy, sensitive only to larger changes   
• Pre-stack input crucial

Δ Sw Δ Pressure
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ModelModel Model

Prediction PredictionPrediction

Synthetic Seismic – Prediction Maps:   Time Step 1 changes             Sand 2

Observations:
• Δ Pressure, Δ Sg still good
• Δ Sw limited sensitivity
• Interbed interference can be resolved

Δ Sw
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4D Synthetic Project Learnings

• Time-lapse seismic inverse problem solvable by ML regression algorithms:
- Random Forest – stable, robust, best results
- Gradient Boosted Trees – alleviates some RF shortcomings
- Neural Nets – not as successful

• Map based analytics approach data driven
- Avoids explicit need for a calibrated rock physics model
- Simplifies vertical reservoir complexity (4D attributes can be augmented

by  3D attributes, e.g.  Impedances from inversion)
- Predicted saturation and pressure differences directly  constrain sim models

• Challenges:
- Not a full volume based inversion (resolution issues) and depends on interpretation
- Lack of 4D well data  - crucial assumption about sim model being true at well locations  
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RF bias



4D Predictive Analytics - Key Takeaways

 New data driven workflow for simultaneous 4D reservoir properties prediction

 Predictive Analytics is a key enabler for directly predicting  (∆P, ∆Sw, ∆Sg) using all 
4D attributes and integrating prestack seismic 

 Value to 4D interpretation workflows: 
• Efficiency and reduced cycle time for interpretation
• Provides a common ground for revisiting 4D model updating workflows
• Facilitates inter disciplinary integration (geophysics, reservoir engineering,…)

Validation is critical

 Success of the feasibility projects have resulted in successful field data applications
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Future: Deep Learning - Multi Layer Neural Networks
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Multi-Layer Perceptron (MLP) Convolutional Neural Net (CNN) Recurrent Neural Net (RNN)

• Neural networks are loosely modeled after the highly 
interconnected cortical neurons and how they pass information 
from one to another (via charge buildup).  

• Intelligence and learning are accomplished when neural pathways 
are strengthened by associating observations or other impulses 
with a specific result.

• Simplest form of neural net
• Everything is fully connected
• The weights of each connection are learned
• Universal extrapolators
• Excel in classification and regression

• Mainly used for classification
• Uses MLP at the end of the architecture
• A variety of features pertaining to the input are 

learned
• Computer vision is possible due to CNNs

• Used for classification or regression
• Outcomes are cycled back into the hidden layers 

to preserve information
• Useful for detecting patterns over time or other 

sequential data (i.e. speech recognition)
• Hard to train
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