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== ‘Having enough data, statistically one can predict anything”

“99 percent of statistics tells only 49 percent of a story” Ron DelLegge |

In statistical learning we establish a hypothetic first, while in machine learning the
predictions are derived without a prior assumption and only from the training data given
(supervised machine learning)

Some of the aspects that affect the accuracy of predictions are:
- Quality of data and sampling errors
- Degree of variance in sampling

- Size of data sampling
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== Emerge Workflow
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== Introduction: Neural Networks for Property Predictions

= Neural Networks have been used for a number of

years to predict seismic reservoir properties from | gt of
well data and seismic attributes. input
attributes:
. : Attribute 1
= HampsonRussell Emerge has the ability to find Att::bﬂt: 5
and apply both linear and nonlinear models. :
: : : I Attribute 3
Nonlinear solutions include Probabilistic Neural
Networks (PNN) and Multi-Layer Feed-forward Attribute n
Networks (MLFN). The new addition is DFNN.
Output
Value

= Neural networks can produce better predictions
than traditional multi-linear regression since they
account directly for non-linear relationship
between logs and attributes.
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== |ntroduction: Porosity Prediction example
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== Deep feed-forward Neural Network (DFNN)

We implemented and studied DFNN, which is a supervised neural network. The
supervised learning is the task of inferring a function from labeled training data.
The learning algorithm then generalizes from the training data to unseen
situations. The resulting model is statistical.

A multi-layer neural network is considered deep if it has 2 or more hidden layers.
As the number of hidden layers increase, a deep forward network can model
more complexity, 8-10 layers can simulate any non-linear function. The greater
the number of hidden layers, the greater the amount of training data required.

Depending on the amount of well control available this typically limits the training
data set to be in the order of hundreds of points. This practically limited the depth
of the neural network and the adoption of DFNNSs for reservoir geophysics.
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==Deep Feedforward Neural Network (DFNN)

= The Deep Forward Neural Network (DFNN)  Input Hidden Output
is an extension of the Multi-Layer Feed Layer (I=1)  Layer (I=2) Layer (I=3)
Forward Network (MLFN).
SRR

Oom \
2
alm(

= The output of the first layer is hidden from

the user so it is called a hidden layer. @ \E

= We can combine many networks in series to @< Ay

create a multilayer network.
@% a3m(?'

= Extra layers allow the network to model
transforms such as higher order

polynomials. (
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——= Comparison of MAT, PNN, DFNN prediction

= DFNN provides more accurate predictions and has faster run-times in
comparison to the Probabilistic Neural Network (PNN).
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=== TOO many parameters?

= Training the DFENN is the process of
determining the optimal set of weights.

= The weights are solved as a large nonlinear
inverse problem using iterative techniques.

= To ensure the network is not over trained
the network is tested on a separate
validation dataset.

Error

= Deep neural networks have many layers
and parameters, increasing the risk of
overfitting.
— Overfitting is characterized by observing Training Error
a small training error and a large —_—
validation error # of Parameters

P
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== How much training data is needed?

_ Porosity
Pl‘ed |Cted Porosity

70

To quantify the data requirements, we try to
guantify what determines a successful
prediction of the data.

&0

30

We use the validation procedure to measure
the success of training, specifically the
percentage-based validation.

40

30

20

In the %-based validation process, a subset of 1”% = F
the original training data is removed. The U
selection process is controlled by a random 45 S R B A
number algorithm. The DFNN is re-trained on o A s s s m A

the reduced training data and applied to the Real
hidden subset. Validation plot: red are the validation
samples and black are the training samples
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== DFNN Parameter Control

12

DFNM Parameters

Mumber of Hidden Layers: 3

Modes in Hidden Layers:
Minimization Option:
L2:

L1:

Total terations:

Eta:

Alpha:

Decrease Constant:

Number of Mini Batches:

[¥] shuffle Option

Random State:

20

sD
0.100000
0.000000
200
0.001000
0.001000
0.000010

30

Ak |4[»

1

LIS

DFNN offers significant advantages in terms of
control of training parameters and speed of
application.

Each of the parameters shown on the left affects
the accuracy of prediction.

Let’s look specifically into these parameters:
* Number of hidden layers

* Number of nodes in a hidden layer
» Total number of iterations
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= Modifying the depth of DFNN: Number of Hidden Layers

As the number of hidden layers is
increased, the network has increasing
number of weights with which to predict the
training data.

Hence, increasing the number of hidden
layers generally reduces the training error,
while potentially increasing the validation
error.

If too many layers are specified there is not
enough data to uniquely determine the
weights, in this case the regularization terms
will drive the weights to zero.

13

Input Hidden
Layer (I=1) Layer (I=2)

Hidden
Layer (1=3)
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== Testing the number of iterations

Errar Error Plot

This parameter sets the total number of

It
12,5}
]

iterations or steps which will be used for

L

either the Conjugate gradient (CG) or 100N

Steepest Descent (SD) algorithm.

Hec

This is the main control which the user has co
to balance the conflicting goals of
simultaneously minimizing the training =

error and the validation error.
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=== \\/Nat t0 do In case of lack of data?

In order to obtain more training data we explore the use of synthetic
seismic data derived from perturbations from the known well control.

Two approaches have been investigated:

Workflow 1: generate new wells using systematic changes
Workflow 2: generate new wells based on adding statistical
variations to the calibrated rock physics relationships.

For example, new wells are created for which the reservoir
thickness, porosity and fluid content are varied.

Synthetic seismic gathers are then generated for each of these new
wells. These data are then used to train the DFNN.
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Workflow 1: create wells and synthetics using

systematic changes
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Inline Changes:

Parameter:
Start Value:
End Value:
Increment:

Unit:

Xline Changes:

Farameter:
Start Value:
End Value:
Increment:

Unit:

| Use percentage for changing

[Gas Saturation
o
100

20

(=6

[Gassmann - Porosity
1
29

9

B

This creates 24 wells with these
combinations:

Porosity: 1, 10, 19, 28 %

Gas saturation: 0, 20, 40, 60, 80, 100 %
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Augmenting real data with synthetic

Synthetics with density inserted:
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== Density prediction GOM data set

The density predicted by DFNN gives a higher resolution result than pre-stack

inversion and appears to tie the well better.
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Workflow 2: create wells using Rock Physics Modelling

Fit one or more rock physics models Porosity vs Depth
(RPMs) to the well data '

Create additional logs to use in the
application of the RPMs — here we
compute Vshale volumetric logs

Calibrate the RPMs to the real well data
Create enhanced porosity logs

Use the enhanced porosity logs as input
to the calibrated RPMs to compute
predicted elastic logs

The input training data for the channel
interval has porosities up to around
22%, with a mean value of ~5%
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== Enhanced EMERGE training set
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= Looking at the histogram of
porosity samples for the channel
interval, the new training data
now has porosities up to 34%,
with a mean value of ~11%



== Prediction using extra data

= After completing a standard EMERGE project to predict a volume of
porosity using all the new data, the best prediction gives a clear
definition of the high porosity channel feature:
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Application:
Validation:

*This is RMS error (the difference between actual & predicted logs)

Correlation
0.828
0.743

*Error (%)
511
6.15

**Total error (%)
29.4
35.4



= Prediction using only original data

= Here is the equivalent slice for the best porosity prediction in
EMERGE using only the original seven wells

= Notice the narrower dynamic range in predicted porosity, lower
correlation values and higher errors

Porasity_orig_MA_na-shift_lpntSatt_prent = <Smooths»

01 Al oM 0 RIE 82 O

Predcted Poessity

8 ne om0 008

Fiml

Correlation  Error (%) Total error (%)
Application: 0.711 4.47 40.5
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— Summary

» Introduced the machine learning functionality via Deep Feed-
forward Neural Network

= Demonstrated the validation procedure of neural network training

» Discussed DFNN to parameter control and to the amounts of
training data.

» Introduced two approaches to expanding the training data model

23 September, 2018



== Acknowledgements

= Dan Hampson and Jon Downton of CGG for their work on DFNN and contributions
to this talk

= @yvind Kjgsnes, AkerBP for the joined work with CGG HampsonRussell on DFNN
that is submitted to EAGE'’s first workshop on machine learning

24 September, 2018



Thank you

dcee

cgg.com GeoConsulting



	Quantifying Data Needs for Deep Feed-forward Neural Network Application in Reservoir Property Predictions
	“Having enough data, statistically one can predict anything”
	Outline
	Emerge Workflow 
	Introduction: Neural Networks for Property Predictions	
	Introduction: Porosity Prediction example
	Deep feed-forward Neural Network (DFNN)
	Deep Feedforward Neural Network (DFNN) 
	Comparison of MAT, PNN, DFNN prediction
	Too many parameters?
	How much training data is needed?
	DFNN Parameter Control
	Modifying the depth of DFNN: Number of Hidden Layers
	Testing the number of iterations
	What to do in case of lack of data?
	Workflow 1: create wells and synthetics using systematic changes
	Augmenting real data with synthetic
	Density prediction GOM data set  
	Workflow 2: create wells using Rock Physics Modelling
	Enhanced EMERGE training set
	Prediction using extra data 
	Prediction using only original data 
	Summary
	Acknowledgements
	Thank you

