

From traditional machine learning to deep learning

FORCE Hackathon and Advances of Machine Learning on Subsurface Data

Anders U. Waldeland anders@nr.no

Stavanger, 20.09.2018

Norsk Regnesentral

1953

- Research institute with about 80 employees, located in Oslo
- Specialize in statistical analysis, machine learning, image analysis

Input data

Relationship

Output

Traditional machine learning

Feature 1

Feature 2

Neural network classifier

Different types of classifiers

What if the features are bad?

Traditional machine learning

Deep Learning

Convolutional Neural Network (CNN) Input Predicted salt Conv1 Conv2 FC6 Conv3 Conv5 13× 13 × 256 **27**× 27 × 256 × 55 × 96

Input

Filter

Input

Filter

$$1 \cdot 0 + -6 \cdot -1 + -1 \cdot 2 + -2 \cdot 2 + -4 \cdot -1 + -4 \cdot 0 + 4 \cdot 5 + -1 \cdot 0 + 7 \cdot -1 = 17$$

Input

Filter

$$1 \cdot 0 + -6 \cdot -1 + -1 \cdot 2 + -2 \cdot 2 + -4 \cdot -1 + -4 \cdot 0 + 4 \cdot 5 + -1 \cdot 0 + 7 \cdot -1 = 17$$

Input

Filter

Deep Learning

CNNs learns high level features

Deep learning

- a revolution in computer vision

- Much higher accuracy
- Much more training data

Deep learning is pushing Al

Research challenges we aim to solve

at NR

Goal: Predict the species in the box

Challenge: around 1500 labelled images

UNIVERSITY OF NORWAY

Confusion table:

```
1: Røyskatt (192)
2: Fugl
       (120)
3: Spissmus (191)
4: Snømus
          (60)
5: Snø
           (196)
6: Lemen
          (212)
7: Rusk
          (223)
8: Vole
       (254)
9: Vann
          (157)
10: Tomt
           (211)
```

```
True | 1 2 3 4 5 6 7 8 9 10 |

1 | [188. 0. 2. 1. 0. 1. 0. 0. 0. 0.]

2 | [ 0. 120. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

3 | [ 0. 0. 186. 0. 2. 0. 0. 0. 0. 0. 3.]

4 | [ 3. 0. 1. 56. 0. 0. 0. 0. 0. 0. 0.]

5 | [ 0. 0. 2. 0. 192. 0. 0. 0. 2. 0.]

6 | [ 0. 0. 0. 0. 0. 0. 211. 0. 1. 0. 0.]

7 | [ 0. 0. 3. 0. 0. 0. 217. 1. 1. 1.]

8 | [ 1. 0. 1. 0. 0. 0. 0. 3. 249. 0. 0.]

9 | [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 157. 0.]

10 | [ 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 210.]
```

Correct recognition rate = **98.3**%

NR-project: Seal detection

Havforsknings Instituttet – Marine Research Institute

NR-project: Seal detection

The challenge is that we have several thousands of large images covering sea ice.

NR-project: Seal detection

- Dataset from the West Ice 2007& 2012 and Canada 2012
- About 10000 seal pups (9000 harp seals and 1000 hooded seals) have been identified.
- About 90000 background images

Some results

Accuracy 3 classes (background, harp, hood): 99.7%

Heat map

Some results

Accuracy 3 classes (background, harp, hood): 99.7%

Some results

Accuracy 3 classes (background, harp, hood): 99.7%

Some results

Accuracy 3 classes (background, harp, hood): 99.7%

Mapping of roads from airborne laser scanning data

NR-project: Mapping of roads from airborne laser scanning data

Gradient (slope) of the DEM

Results

Results

Results

Airquip – Counting cars from satellites

Metrologisk institutt

Extracting key horizons

COGMAR: Image analysis for marine data

Problem: Transfer learning

Problem: Domain shift

Problem:

No uncertainty estimates No out-of-distribution detection

Problem: Confounding variables

Thank you for the attention.

Questions?

