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Graphical model
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Main objective

Quantify uncertainty in pore pressure prediction using data assimilation
method.
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Problem description

Figure: 3D grid of a subsurface domain

Workflow:

1 train a prior distribution
from realizations of pore
pressure obtained from
Pressim;

2 specify the likelihood
model for well log data
based on the available logs
in the vicinity of the
current location;

3 use a sequential updating
method to get online pore
pressure prediction.
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Prior model - geometry of data used to fit model

(a) Vertical view of the field showing the
division in layers.

(b) Compartments separated by
geological faults
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Prior model - pore pressure realization

Figure: Pressures
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Prior model - new variable

Constraint:
phi < pi < pobi .

Logistic transform:

xi = log

(
pi − phi
pobi − pi

)
⇒ pi =

exipobi + phi
1 + exi

.
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Prior model - linear regression

For each layer of the overpressured area we fitted a linear regression model

xik ,k = β0,k + β1,ksik3,k + εik ,k k = 6, . . . , 18

Figure: Residuals of the regression analysis for layer 8.
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Prior model - fit variogram

(a) Empirical semivariogram (square) and
fitted exponential semivariogram (solid
line) for layer 8.

(b) Empirical semivariogram (square) and
fitted exponential semivariogram (solid
line) for compartment 41.

γk (h) = σ2
k

(
1− exp

(
− h

rk

))
k = 6, . . . , 18,

γc (h) = σ2
c

(
1− exp

(
− h

rc

))
c = 1, . . . , 41.
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Prior model - prior covariance matrix

Σ(s i ,k , s j ,l) = σ2 exp

(
−
√

(si1,k−sj1,l )2+(si2,k−sj2,l )2

r1
− |si3,k−sj3,l |r2

)

(a) Prior covariance (b) Prior correlation
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Prior model - mean

Figure: Pore pressure prior mean (black) with a 90% prediction interval (green)
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Likelihood model - well log data

Figure: Well log measurements as function of the measured depth (MD). In the likelihood
fitting the black dashed parts are ignored.
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Likelihood model - rock physics relation 1

y j =

 rj
φj

∆tj

 =



(
pobj−pj
pobj−phj

)1/nr

r0e
bzj

φ0 exp

(
−

pobj−pj
pobj−phj

cφzj

)
(∆tml −∆tm) exp

(
pj−pobj
pobj−phj

ctzj

)
+ ∆tm

+

 εrj
εφj
ε∆tj



⇒ y j = g j(pj) + εj , εj ∼ N(0,R), j = 1, ...,N

1Zhang J. Pore pressure prediction from well logs: methods, modifications, and new
approaches. Earth Sci Rev 2011; 108:50–63.
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Likelihood model - paremeters values

(a) Transit time vs resistivity (b) Transit time vs porosity

(c) Porosity vs resistivity
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Likelihood model - measurements errors

R̂ =

∑N
j=1

(
y j − g j(µj)

) (
y j − g j(µi )

)t
N

−
∂g j

∂pj

∣∣∣∣
µj

Var(pj)
∂g j

∂pj

∣∣∣∣t
µj

R̂ =

 6.8137 0.1503 8.5835 ∗ 10−5

0.1503 0.0083 4.4036 ∗ 10−6

8.5835 ∗ 10−5 4.4036 ∗ 10−6 2.5930 ∗ 10−9

 .
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Likelihood model - model errors

(a) Resistivity (b) Porosity

(c) Transit time
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Sequential updating

Linearize likelihood at every step, leading to the Gaussian distribution
π(x |y1, . . . , y j). The updated mean mj = E (x |y1, . . . , y j) and variance
V j = Var(x |y1, . . . , y j) are computed recursively over the data gathering
steps:

Initialization:

m0 = µ,

V 0 = Σ,

Recursive updating for j = 1, . . . ,N:

S j = G jV j−1G t
j + R,

K j = V j−1G t
jS
−1
j ,

mj = mj−1 + K j(y j − g j(mj−1)),

V j = V j−1 −K jG jV j−1.
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Results - along the well path
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Results - updated mean and standard deviation
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Results - updated mean and standard deviation
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Sensitivity analysis - prior model

Case I:

Σnew (s i ,k , s j ,l) = σ2
new exp

(
−
√

(si1,k−sj1,l )2+(si2,k−sj2,l )2

r1
− |si3,k−sj3,l |r2

)
,

with σ2
new = 2 ∗ σ2

Case II: Σnew = Σ + zΣβgl
zT

Case III: faults control lateral fluid flow.
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Sensitivity analysis - measurements error

Case IV: Rnew = 4 ∗ R
Case V: Rnew = 1

4 ∗ R.
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Sensitivity analysis - data types

Case VI: only resistivity

Case VII: only porosity

Case VIII: only sonic transit time

Case IX: porosity and sonic transit time.

Jacopo Paglia, Jo Eidsvik, Arnt Grøver and Ane Lothe Sequential Bayesian methods for spatial on-line pore-pressure prediction from well log data20/09/2018



Conclusion

The main contribution of the study is pore pressure prediction highlighting
the following points:

Bayesian modeling: The approach provides consistent integration of
pre-drill a priori knowledge about the pore pressure and the well log
measurements.

Online: The prediction of pore pressure is updated when the new well
log data is available.

Spatial prediction: The prediction is not only done near the borehole
location, but also ahead of the bit and at other lateral and depth
locations.

Uncertainty: The spatial predictions of pore pressure are represented
by a mean value best prediction and a variance/covariance description.
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PSI - sensitivity analysis on mud weight window

(a) Main effects for upper bound (b) Interactions for upper bound.
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