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Introduction
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One of the leading challenges in hydroarbon recovery is predicting rock types 
distribution throughout the reservoir, away from the wells, because rock 

property determination is a major source of uncertainty in reservoir modeling

Benefits of Machine Learning

Capitalizes on continuously increasing amount of data

Explore datasets and identify patterns and relationships that may be invisible to the 
human eye

Can be automated, to extract valuable information in minimal time, supporting informed 
decisions  



Application on a Real Case : East Soldier Mound (Onshore US)
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Location
• Eastern shelf of the Permian Basin – East of Lubbock, TX

• Mixed carbonates and siliciclastic shelf

• 3 - 4 million barrel field reserves

• Shallow, vertical wells



Geological Context 
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Generalized dip stratigraphic cross section of the Wolfcampian, 
showing depositional systems, and progradation and aggradation 
of Eastern Shelf 

• Packstones formed 293 and 295 MA during stages (B) and (C) when the 
area was submerged, and organisms were active. 

• Oil sourced from a reef on the NE end of the Horseshoe Atoll at some 
distance from the field (~20 miles)

• Porosity from bioturbation and oolitic shoaling

• Porosity enhancement from much later fracturing

• Upper Wolfcamp production above the Middle Wolfcamp unconformity

• Delta Sand production from the Middle Wolfcamp sand

• Prograding Lower Wolfcamp reefs – productive in back-reef position

Model for deposition of a typical cycle in the Wolfcampian “reef” 
interval. (After Saller et al.,1999).

Present time analog: Bahamas!

After Rankey et al., 2006 

C (West) C’ (East)



Available Data And Challenges
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A New Approach Was Requested to Predict Pay Facies and Optimize the Drilling Strategy

Challenges
• Reservoir facies determination is important since it will 

affect the reservoir properties distribution

• Inappropriate determination of the facies distribution 
may give unrealistic reservoir behavior

• Oil-filled packstone layers are thin

• Scale between wells data and seismic information is 
very different

• Traditional inversion did not provide results of sufficient 
quality to support drilling decision

• Small seismic survey, high resolution and good quality
• Seismic attributes 
• 3 wells 

Available Data

Objectives
• Prediction of rock types/fluid content distribution 

throughout the reservoir to:

– Capture lateral and vertical heterogeneities
– Constrain reservoir models away from wells

• Validation of the drilling strategy



Classifying lithologies and facies is crucial to identify rocks of 
interest 

Seismic Facies Classification
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A critical aspect of reservoir characterization

Depositional environments are encountered in the 
wellbore. 

How to confidently 
determine the facies 
distribution away from 
the wells? 

Well data provide reliable 
information but are too 
sparse

Information from the wells and 
seismic data are not linearly 
correlated

Conventional inversion often 
renders overlap between the 
different classes

Integrating data of different 
resolutions is often tedious and 
impractical

Facies logs and most probable facies in carbonate reef geologic setting



Our Rock Type Classification Approach
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Democratic Neural Network Association (DNNA) allows for the generation of lithology probabilities from a combination of quantitative 
rock typing analysis at wells and seismic data at the well location.

The Algorithm: DNNA

Composed of several independent networks in parallel, it learns from data, finds patterns and relationships and predicts distribution and 
probability of occurrence of a specified reservoir property

The Methodology

Workflow Overview

Training Set 
Definition

Training Set 
Creation Training Classification Smoothing

Final Output

Steps



Associative Neural Networks and Democratic Learning Concepts
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Democratic Learning 
• The multistrategy learning ASNN performance will be 

limited by the number of hard data samples from the 
training dataset and can lead to unreliable results

• To avoid this bias, the training dataset is improved by using 
a combination of hard and soft data during a stabilization 
step (democratic contribution)

• All learning methods will give a vote for each unlabeled data

• If the vote is unanimous, then the unlabeled data is 
added to the training dataset

• The enriched dataset is then used as input training 
dataset for the neuron sets

• At the end of all learnings, all neuron sets are merged 
into one single neuron set

• A neural network is designed to learn in a specific way. 
Using only one supervised neural network tends to bias the 
results of the training

• A network is built to reach one objective, which is usually to 
approximate data or class densities 

• The use of several naïve networks running 
simultaneously as an associative combination is 
preferred 

• Simultaneously run different neural networks to be trained 
with the same hard data set provides the ability to handle 
the training of associative neural networks with a 
unique set of seismic data, paired with the well 
information

• Defining an ensemble of networks with different learning 
strategies helps to compensate for the existing bias 
when using only one network

Associative Neural Networks



Workflow Steps
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Selection of unlabeled data

Enriched training data

Training dataset

Learning 2

Vote

Learning mLearning 1

Learning 2 Learning nLearning  1

𝑇𝑇 = 𝑥𝑥𝑤𝑤 , 𝑐𝑐 𝑖𝑖

𝑈𝑈 = 𝑥𝑥𝑤𝑤 , 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑗𝑗

𝑉𝑉 = 𝑇𝑇 ∪ 𝑈𝑈𝑠𝑠 𝑈𝑈𝑠𝑠 = 𝑝𝑝𝑢𝑢𝑝𝑝𝑢𝑢𝑝𝑝𝑝𝑝 𝑢𝑢𝑜𝑜 𝑈𝑈 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑝𝑝𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏 𝑣𝑣𝑢𝑢𝑝𝑝𝑝𝑝𝑢𝑢𝑣𝑣

1st Neural
Network Training 

Democratic 
contribution

2nd Neural Network 
Training 

Neuron set 2Neuron set 1 Neuron set m

Neuron set 2Neuron set 1 Neuron set m

• Selection of the data to be used for the 
classification 
 electrofacies
 seismic data: pre- or poststack data

1. Training Set Definition



Workflow Steps
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• Learning Methods
• Analysis of unlabeled data
• Democratic vote
• Enriched training dataset 

2. Neural Network Training

Democratic contribution is unanimous: 
the soft data is added to the training 
dataset, with a smaller weight

Selection of unlabeled data

Enriched training data

Training dataset

Learning 2

Vote

Learning mLearning 1

Learning 2 Learning nLearning  1

𝑇𝑇 = 𝑥𝑥𝑤𝑤 , 𝑐𝑐 𝑖𝑖

𝑈𝑈 = 𝑥𝑥𝑤𝑤 , 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑗𝑗

𝑉𝑉 = 𝑇𝑇 ∪ 𝑈𝑈𝑠𝑠 𝑈𝑈𝑠𝑠 = 𝑝𝑝𝑢𝑢𝑝𝑝𝑢𝑢𝑝𝑝𝑝𝑝 𝑢𝑢𝑜𝑜 𝑈𝑈 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑝𝑝𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏 𝑣𝑣𝑢𝑢𝑝𝑝𝑝𝑝𝑢𝑢𝑣𝑣

1st Neural
Network Training 

Democratic 
contribution

2nd Neural Network 
Training 

Neuron set 2Neuron set 1 Neuron set m

Neuron set 2Neuron set 1 Neuron set m



Workflow Steps
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The Training Dataset Contains Both Hard and Soft Data 
and Is Used to Further Train The Neural Networks

Selection of unlabeled data

Enriched training data

Training dataset

Learning 2

Vote

Learning mLearning 1

Learning 2 Learning nLearning  1

𝑇𝑇 = 𝑥𝑥𝑤𝑤 , 𝑐𝑐 𝑖𝑖

𝑈𝑈 = 𝑥𝑥𝑤𝑤 , 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑗𝑗

𝑉𝑉 = 𝑇𝑇 ∪ 𝑈𝑈𝑠𝑠 𝑈𝑈𝑠𝑠 = 𝑝𝑝𝑢𝑢𝑝𝑝𝑢𝑢𝑝𝑝𝑝𝑝 𝑢𝑢𝑜𝑜 𝑈𝑈 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑝𝑝𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏 𝑣𝑣𝑢𝑢𝑝𝑝𝑝𝑝𝑢𝑢𝑣𝑣

1st Neural
Network Training 

Democratic 
contribution

2nd Neural Network 
Training 

Neuron set 2Neuron set 1 Neuron set m

Neuron set 2Neuron set 1 Neuron set m

2. Neural Network Training
• Learning Methods
• Analysis of unlabeled data
• Democratic vote
• Enriched training dataset 

The vote is not unanimous: the soft 
data is not included into the training 
data set



Workflow Steps
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3. Classification Validation
• Visual QC
• Classification report
• Bootstrapping method to assess 

the quality of the model
 Bootstrap error to simulate the 

rate of prediction away from 
wellbore

Reconstruction rate and confusion matrix help QC-ing the 
results and adjust parameters to reduce the confusion if 
needed

Predicted log versus 
observed data



Workflow Steps
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4. Classification Propagation 
and Output
• Classification methods

• K-nearest neighbors

• Probabilistic (linear inversion)

• Probabilistic (Gaussian)

• Outputs

• Classification summary

• Most probable facies volume

• Maximum probability

• Probability volume for each facies



Back to The Real Case...
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Input data 

Facies logs defined by wireline logs
Stack and offset gathers 



Back to The Real Case...
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• Most probable facies volume

• Probability volume for each facies

• Validation through prediction along wellbore and volume

Facies Classification Results

Validation of the 
output at the wellbore



Conclusion

17

This Machine Learning Based Rock Typing Classification Method 
Introduces Realistic Heterogeneity, Supporting Decision Making

• Bring new potential about seismic data 
reliability for prediction of reservoir facies 
away from wells, especially when referring to 
prestack data, which carry more information 
with any type of seismic attributes 

• Provide faster images of the subsurface while 
still maintaining accuracy, thus helping to 
improve the decision-making process in the 
drilling location determination

• Approach can be applied to other geologic 
setting

Key Points

Updated drilling target 
location, based on 
current rock type 
classification



Key Points
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One of the leading challenges in hydroarbon recovery is predicting rock types 
distribution throughout the reservoir, away from the wells, because rock 

property determination is a major source of uncertainty in reservoir modeling

Benefits of Machine Learning

Capitalizes on continuously increasing amount of data

Explore datasets and identify patterns and relationships that may be invisible to the 
human eye

Can be automated, to extract valuable information in minimal time, supporting informed 
decisions  



Further Reading
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