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Introduction

One of the leading challenges in hydroarbon recovery is predicting rock types
distribution throughout the reservoir, away from the wells, because rock

property determination is a major source of uncertainty in reservoir modeling

Benefits of Machine Learning

Capitalizes on continuously increasing amount of data

Explore datasets and identify patterns and relationships that may be invisible to the
human eye

Can be automated, to extract valuable information in minimal time, supporting informed
decisions



Application on a Real Case : East Soldier Mound (Onshore US)

Location

 Eastern shelf of the Permian Basin — East of Lubbock, TX
» Mixed carbonates and siliciclastic shelf
* 3 -4 million barrel field reserves

» Shallow, vertical wells
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Geological Context

e o « Packstones formed 293 and 295 MA during stages (B) and (C) when the Present time analoa: Bahamas!
ﬁﬂf/ T area was submerged, and organisms were active. g '

* Qil sourced from a reef on the NE end of the Horseshoe Atoll at some
distance from the field (~20 miles) Atlantic Ocean

e Porosity from bioturbation and oolitic shoaling

(B) INITIAL FLOODING OF SHELF . )
4.8/ smmon. - » Porosity enhancement from much later fracturing
SR e/ R

* Upper Wolfcamp production above the Middle Wolfcamp unconformity

e Delta Sand production from the Middle Wolfcamp sand {:E‘tf‘:’“k

* Prograding Lower Wolfcamp reefs — productive in back-reef position
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Slope/basinal facies (dominantly
shale and calcareous shale)

(D) LOWSTAND FLUVIAL AND DELTAICS
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(5] FOSSILITEROUS WACKESTONES & PACKSTONES Model for deposition of a typical cycle in the Wolfcampian “reef” '
interval. (After Saller et al.,1999).
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Available Data And Challenges

Available Data

« Small seismic survey, high resolution and good quality
« Seismic attributes

« 3 wells

Objectives

 Prediction of rock types/fluid content distribution
throughout the reservoir to:

— Capture lateral and vertical heterogeneities
— Constrain reservoir models away from wells

 Validation of the drilling strategy

Challenges

* Reservoir facies determination is important since it will
affect the reservoir properties distribution

* Inappropriate determination of the facies distribution
may give unrealistic reservoir behavior

 Oil-filled packstone layers are thin

» Scale between wells data and seismic information is
very different

 Traditional inversion did not provide results of sufficient
guality to support drilling decision

A New Approach Was Requested to Predict Pay Facies and Optimize the Drilling Strategy




Seismic Facies Classification

A critical aspect of reservoir characterization

Classifying lithologies and facies is crucial to identify rocks of
Interest

Depositional environments are encountered in the
wellbore.

Well data provide reliable Integrating data of different .
information but are too resolutions s often tedious and i
sparse impractical = '
P How to confidently
determine the facies
. Conventional inversion ofte ‘et it ‘
Information from the wells and nentiond’ " " distribution away from

renders overlap between the the wells?

seismic data are not linearly different classes

correlated



Our Rock Type Classification Approach

The Algorithm: DNNA

Democratic Neural Network Association (DNNA) allows for the generation of lithology probabilities from a combination of quantitative

rock typing analysis at wells and seismic data at the well location.
The Methodology

Composed of several independent networks in parallel, it learns from data, finds patterns and relationships and predicts distribution and
probability of occurrence of a specified reservoir property

Workflow Overview
Training Set Training Set o
m

Probability for
Each Facies

Steps

Most probable
facies
distribution

Maximum
Probability é'
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Associative Neural Networks and Democratic Learning Concepts

Associative Neural Networks

A neural network is designed to learn in a specific way.
Using only one supervised neural network tends to bias the
results of the training

A network is built to reach one objective, which is usually to
approximate data or class densities

The use of several naive networks running
simultaneously as an associative combination is
preferred

Simultaneously run different neural networks to be trained
with the same hard data set provides the ability to handle
the training of associative neural networks with a
unique set of seismic data, paired with the well
information

Defining an ensemble of networks with different learning
strategies helps to compensate for the existing bias
when using only one network

Democratic Learning

The multistrategy learning ASNN performance will be
limited by the number of hard data samples from the
training dataset and can lead to unreliable results

To avoid this bias, the training dataset is improved by using
a combination of hard and soft data during a stabilization
step (democratic contribution)

All learning methods will give a vote for each unlabeled data

If the vote is unanimous, then the unlabeled data is
added to the training dataset

The enriched dataset is then used as input training
dataset for the neuron sets

At the end of all learnings, all neuron sets are merged
Into one single neuron set



Workflow Steps

1. Training Set Definition

» Selection of the data to be used for the
classification

» electrofacies
» seismic data: pre- or poststack data

1 Neural
Network Training

\ [ Training dataset ]

—

T = {(xw, )i}

‘ Neuron set 1 ‘

Neuron set 2 ‘

\i

\V

=

‘ Neuron set m ]

%

Selection of unlabeled data
U = {(xy, unknown);}

Democratic
contribution

Enriched training data
V = {T U Ug|Ug = points of U selected by voting}

|

Training

‘ Neuron set 1

Neuron set 2 ‘

—

‘ Neuron set m 1
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Workflow Steps

2. Neural Network Training

Learning Methods
Analysis of unlabeled data
Democratic vote

Enriched training dataset

Democratic contribution (s unanimous:
the soft data is added to the training
dataset, with a smaller weight

Training dataset
T= {(xw' C)i}

1% Neural
Network Training

‘ Nel [ tm ‘

Democratic
contribution

Enriched training data
V = {T U Ug|Ug = points of U selected by voting}

N

Training

—

‘ Neuron set m ‘

‘ Neuron set 1 ‘ ‘ Neuron set 2 ‘
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Workflow Steps

Training dataset
T = {(xw, )i}

2. Neural Network Training

 Learning Methods

« Analysis of unlabeled data 1% Neural
Network Training = T
- Democratic vote @ | | e N ] i
A\
* Enriched training dataset =
— Democratic
- contribution
Enriched training data
V = {T U Ug|Ug = points of U selected by voting}
N
The vote is not unanimous: the SOFt Training
data is not included into the training  Newonsetl | Neuonsetz |  Newonsetm |
data set

The Training Dataset Contains Both Hard and Soft Data

and Is Used to Further Train The Neural Networks



Workflow Steps

3. Classification Validation

* Visual QC
 Classification report

e Bootstrapping method to assess
the quality of the model

» Bootstrap error to simulate the
rate of prediction away from
wellbore

Predicted log versus
observed data

N

Reconstruction rate and confusion matrix help QC-ing the
results and adjust parameters to reduce the confusion if
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Workflow Steps

4. Classification Propagation
and Output

» Classification methods

» K-nearest neighbors
 Probabilistic (linear inversion)

 Probabilistic (Gaussian)

Outputs
* Classification summary
» Most probable facies volume
« Maximum probability

* Probability volume for each facies

Attribute 1

. “*,  Facies 1

Facies 2

Astribute 2

K-Nearest Neighbors

All nearest neighbors have
the same weight.

.........
.,
.,

e . Facies 1

o

Attribute 1
L ]

Facies 2

Attribute 2

Probabilistic (Linear Inversion)

Samples are weighted based on
linear distance from sample,
inverted (shortest distance has
highest weight).

Attribute 1

......
o o,
....

., Facies 1

.......
.........

Probabilistic (Gaussian)

Samples are weighted based
on Gaussian distance from
sample.



Back to The Real Case...
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Back to The Real Case...

Facies Classification Results

* Most probable facies volume

HEE

* Probability volume for each facies

 Validation through prediction along wellbore and volume

Validation of the
output at the wellbore

it A

!IEI I]IJ'
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Conclusion

Key Points

* Bring new potential about seismic data
reliability for prediction of reservoir facies
away from wells, especially when referring to
prestack data, which carry more information
with any type of seismic attributes

* Provide faster images of the subsurface while
still maintaining accuracy, thus helping to
Improve the decision-making process in the
drilling location determination

* Approach can be applied to other geologic
setting

Updated drilling target
location, based on
current rock type

classification S

Net temporal thickness map (ms) from facies 5 cutoff

This Machine Learning Based Rock Typing Classification Method

Introduces Realistic Heterogeneity, Supporting Decision Making

- tannehill-new, Time Migrated

Horizon




Key Points

One of the leading challenges in hydroarbon recovery is predicting rock types
distribution throughout the reservoir, away from the wells, because rock

property determination is a major source of uncertainty in reservoir modeling

Benefits of Machine Learning

Capitalizes on continuously increasing amount of data /

Explore datasets and identify patterns and relationships that may be invisible to the /
human eye

Can be automated, to extract valuable information in minimal time, supporting informed
decisions ‘/
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