History matching interdisciplinary workflows incorporating uncertainty

Steve Walsh & Henning Nottveit Roxar Emerson

Roxar Software Solutions Unauthorised replication prohibited

Synthetic Project

- Workflow based on 2 'BigLoop' uncertainty studies performed by Roka 2016, extended to include structural uncertainty & utilize stochastic proxy
 Specific studies presented in more detail at EAGE conferences* Here a synthetic test project is used for demonstration purposes
- 15 wells, (7 producers, 6 injectors)
- AOI 8km x 9km. 10 faults, extensional structure
- 3 reservoir zones (oil, clastic sandstones)

Uncertainty in Well Data

There is uncertainty in the petrophysical logs at the raw well level

For example, here NTG defined by porosity, permeability cut-offs on the raw well logs:

ENABLE can adjust the cut-off values, allowing easy investigation of the impact of NTG definition uncertainty

Other well uncertainties: pick MD (interpretation uncertainty) & trajectory (MD->XYZ) positional uncertainty

EMERSON

FORCE May 2017

Interpretation in Time with Uncertainty

• RMS MDI interpretation - all interpretation points have an associated uncertainty ellipse - which define uncertainty envelopes around the surfaces & faults

These uncertainty envelopes (defined by the Geophysicist) are carried into the modelling phase

Interpretation used to make structural model

• Base RMS Structural model constructed from seismic interpretation Structural model constructed in time, not depth

Horizon Uncertainty Modelling (now) Kosar Software Solutions HUM inputs: • TIME: Time structural model surfaces & the associated 'picking uncertainty envelopes • DEPTH: Well picks, and associated uncertainties (pick (MD) & trajectory (MD->XYZ)) Polication prohibited

=>

- Predicted Depth Maps
- Prediction Uncertainty
- ENABLE modifier adjusts HUM predicted depth map within the envelope defined by the HUM prediction uncertainty
- Adjusted depth maps used to generate a revised velocity model for depth conversion of fault & horizon interpretation Allows ENABLE to investigate impact of structural uncertainty within constraints of the input data uncertainty

EMERSON

Depth structural model + FUM -> Grid

- Depth converted interpretation (via revised velocity model) used to generate depth structural model
- Fault Uncertainty Modelling (FUM) used to adjust fault position
 - ENABLE modifier controls fault movement, within the interpretation uncertainty envelope
- Intermediate reservoir surfaces added using Isochore Modelling from thicknesses defined by well pick pairs
- Final depth structural model is then generated & geocellular grid constructed

Facies Modelling

EMERSON

Property Modelling

Petrophysical simulation of Porosity, Permeability & NTG per zone/facies

ENABLE can adjust Porosity per zone/facies - reflecting uncertainty in how representative

the BW well data is of the field as a whole. (Could have also included perm/NTG)

- KVKH ratio also controlled by ENABLE
- Results upscaled to simulation grid
- Well events generated
- Grid geometry, property arrays, faults & well events exported to simulator

FORCE May 2017

RMS Workflow complete - over to History Matching

- 'Standard' RMS workflow: Automated from seismic interpretation to export for simulation
- Adjustments reflecting uncertainty defined & implemented at the appropriate modelling step and propagate through the rest of the workflow

Uncertainty in: interpretation, velocity model, petrophysical logs, structure/grid, facies model and property model

- Automation of these adjustments allows efficient generation of the implied models. And these can be tested/ analysed by history matching software in *combination with traditional dynamic uncertainties*
- ENABLE controls settings, currently by writing a simple script file that is read by the RMS workflow

😻 🗗 BIGLOOP	• & 7 4	😻 🗗 BIGLOOP 🔹 🛷 🖑	
Input Start	Job Outpu	Uncertainty/Sensitivity Setup Project	
	2: Horizon modelling TBME, TBME_SeismicFramework: TBME_SeismicFramework	User mode O Screening O Monte Carlo O Advanced Identify uncertainties Quantify uncertainties Define dependencies Set realisations	
S MSL	3: Extract interpretation data Interpretations: Extract_Pick_Uncertainity	Define the sensitivities to be tested for each job input parameter. Alternatively, define distributions from Optionally, select a file from where the values for the uncertain job input parameters are specified for All HIFT_Top_Reservoir Set from Script	
	4: Extract horizons/zones from horizon model TIME_TIME_SeismicFramework: TUM_TimeModel_Extra.	Image: One HIFT_Base_Reservoir Image: Set from Script RUCT_SHIFT_Seabed Image: Set from Script	
	5: Above steps only need to be run one - they	RMS_VF_Z1_Ch Set from Script RMS_VF_Z2_Ch Set from Script	
	6: IPL SetDefaultUncertaintyValues	RMS_VF_Z3_Ch Set from Script RMS_VF_Z1_Cr Set from Script	
	7: IPL Load_Variables_From_ENABLE	Command Edit - Job: Load_Variables_From_ENABLE - Elapsed time: 0:00:00.0	× • 🗳 🏹
	B: Raw well operations	IPL job Include ("RMS_IPL.ipl")	
2017			

Tempest ENABLE & Roxar Application Connector (RAC)

- Tempest ENABLE: Roxar's Assisted History Matching tool. RAC: Roxar Application Connector
- Define RAC 'Components' and how exported data from one is be used as input to another. Here using just 2 Roxar components, RMS for the Static model and MORE for Simulation
- In principle a component could be any external application or script that can be run/suitably controlled from a command line. But it should be capable of running on a cluster to allow simultanous processing of large numbers of runs
- Using the proxy modelling approach, every Enable run will be generating a new realization of the static model (structure, grid, properties) using a different stochastic seed & modifier values, which is used as input for dynamic simulation

ENABLE: Define 'Prior' modifiers, ranges and correlations

							<u> </u>	<u> - </u>					
Roxar Tempest 8.0						<u> </u>		<u>' 00</u>) ft.				
e Edit Runs Diagnostics Options Tools Wind	ows Help					aur	Oria		"Wa	roo			
	1 SON	-		2				Silv					
Data Supervisor										atin.		JUS	
- 🥳 DEMO	Name 🛆	Active	Correlated	Min	Max	Most Likely	Param 1	Param 2	Focus Min	Focus Max	Distribution	Transform	Ту
🖕 🥔 RAC	F1			-1.0	1.0	0.0					Uniform	L n .ai	Geolo
🛱 🧈 🛹 RMS 10	F10			-1.0	1.0	0.0	6				Uniform	Linear	Goolo
🤤 🧱 RMS_IPL.ipl	F2			-1.0	1.0	0.0					Uniform	Linear	Geulo
	F3			-1.0	1.0	0.0	6		8		Uniform	Linear	Geolo
JADE.dat	F4			-1.0	1.0	0.0			÷		Uniform	Linear	Geolo
🕀 🧐 Modifiers	F5			-1.0	1.0	0.0			o6		Uniform	Linear	Geolo
Actual	F6			-1.0	1.0	0.0			÷		Uniform	Linear	Geolo
Non-scalar	F7			-1.0	1.0	0.0			o 6		Uniform	Linear	Geolo
f User Functions	F8	•		-1.0	1.0	0.0			i di		Uniform	Linear	Geolo
	F9	V		-1.0	1.0	0.0	8		o		Uniform	Linear	Geolo
💱 🛛 Generic Matches	FA_Z1_Ch			0.0	120.0	38.0			ð		Uniform	Linear	Geolo
🔟 Qualities	FA_Z2_Ch			0.0	120.0	38.0	8		0 0		Uniform	Linear	Geolo
- O Runs	FA_Z3_Ch	V		0.0	120.0	38.0			i di		Uniform	Linear	Geolo
🗄 🥔 Run Sets	FL_Z1_Cr	•	Γ	200.0	1000.0	500.0	8		0 0		Uniform	Linear	Geolo
	FL_Z2_Cr	•		200.0	1000.0	500.0			i di		Uniform	Linear	Geolo
	FL_Z3_Cr			200.0	1000.0	500.0	8		0 0		Uniform	Linear	Geolo
	FMUL_F1			0.1	1.0	0.5					Uniform	Linear	Geolo
	FMUL_F10	V		0.1	1.0	0.5	8		0 0		Uniform	Linear	Geolo
	FMUL_F2			0.1	1.0	0.5			8		Uniform	Linear	Geolo
	FMUL_F3	V		0.1	1.0	0.5	6		0 0		Uniform	Linear	Geolo
	FMUL_F4			0.1	1.0	0.5			÷		Uniform	Linear	Geolo
	FMUL_F5			0.1	1.0	0.5	8		0 0		Uniform	Linear	Geolo
	FMUL_F6			0.1	1.0	0.5			÷		Uniform	Linear	Geolo
	FMUL_F7	V		0.1	1.0	0.5			0 0		Uniform	Linear	Geolo
	FMUL_F8			0.1	1.0	0.5			8		Uniform	Linear	Geolo
	FMUL_F9			0.1	1.0	0.5	8		0 0		Uniform	Linear	Geolo
	FT_Z1_Ch			5.0	15.0	10.0			÷		Uniform	Linear	Geolo
	FT_Z1_Cr			2.0	15.0	5.0	6		0 0		Uniform	Linear	Geolo
	FT_Z2_Ch			5.0	15.0	10.0			÷		Uniform	Linear	Geolo
				1	1							1	•

Scoping then Refinement runs to give a reliable Proxy Model

- Refinement runs are only partly aiming to acheive good history matches. Primarily these runs are testing the response of the simulator at each estimator point to the modifer ranges/combinations
- History Matching is considered completed once the internal proxy model is judged to be sufficiently "refined", such that it is capable of reliably predicting the response at the estimator points for a given set of modifer values

- Several modelling processes are often stochastic different seed numbers result in different equiprobable models from identical inputs. Such as facies or petrophysical modelling
- ENABLE Proxy model uses "Repetition Runs" to quantify the impact of this stochastic noise on simulation results
- Runs are automatically generated that use the same modifier values with different seeds, and the results incorporated into the proxy calculations. Without this "Stochastic Proxy", a proxy model would incorrectly attempt to "fit" this noise.

EMERSON

Prior vs Posterior Modifier Ranges

- Combined assessment of both static and dynamic uncertainty modifiers is now possible
- Proxy model reveals the changes to the modifer distributions that were required to achieve models that are consistent with the dynamic data obervations. Prior (grey) and Posterior(red). Top structure and zone 1 facies volume fraction modifiers shown.

Updated Geological Model Realizations

- Investigation of selected static model realizations that give good history matches while still honouring the input data given the specified uncertainty ranges
- See impact here of the modifiers on velocity model, structure, fault position, facies volume fraction and facies deposition direction in this realization of the static model that have resulted in the improved history match

MCMC sampling from proxy model to generate prediction ensemble

- Modifier values for a new Ensemble then generated by MCMC sampling from the proxy posterior distributions.
- Modifier values are being applied at the applicable point in the combined static & dynamic workflow to generate the models used in each simulation. Adjustments are therefore being made in a geologically consistent manner, as opposed to traditional manual modifications applied to the dynamic simulation grid in isolation.
- This Ensemble should therefore give a more reliable prediction of response and uncertainity ranges.

Unauthorised replication prohibited BigLoop: History matching interdisciplinary workflows incorporating uncertainty

Steve Walsh & Henning Nottveit Roxar Emerson

Roxar Software Solutions