Polymer flooding –improved sweep efficiency for utilizing IOR potential

Force seminar April 2016

Classic polymer screening

🗓 IRIS

- › Viscosifying effect
 - Solution preparation
 - Bulk rheology
- > Flow properties in porous media
 - Filterability
 - Screen factor
 - Mobility reduction
 - Permeability reduction
 - Inaccessible pore volume
 - Retention
- > Stability
 - Shear stability
 - Thermo-chemical stability

IOR mechanism – Improve sweep by reducing mobility ratio

 Water-cut depends on polymer viscosity and permeability

IRIS

- > Will polymer alter Sor?
 - Lab scale correctly interpret fw = 1, if not recovery increases by reducing M
 - Field scale the existence of critical fw at which above production is not economic

8 April 2016

How to optimize mobility ratio

- > Polymer viscosity depends on Mw, concentration and salinity
 - $\eta = \eta_{sol}(1 + [\eta]ce^{k'[\eta]c})$
 - Intrinsic viscosity, $[\eta] = A \cdot M_w^a$
 - Intrinsic viscosity depends on effective salinity, $C_{MIS} = \frac{1}{2} \sum_{i} m_i z_i^{2+ki}$

- > Non-Newtonian fluids
 - Rheology in porous media differs from bulk rheology
 - Slip flow
 - Depleted layer
 - Fåhræus-Linquist effect

How to optimize

- Polymer 1 Regular HPAMbased polymer
 - Relatively shear stable viscsosity at moderate shear rates
- > Polymer 2 Biopolymer
 - Shear thinning polymer
- Polymer 3 HPAM-based polymer with hydrophobic co-monomers (Associative polymer)
 - Highly shear thinning at moderate shear rates

Shear degradation in porous media

- Synthetic polymers are shear senstive
- Onset of degradation above critical shear rate, which depends on Mw
- LMW polymers are more shear stable than HMW
- Replacing HMW
 polymer with LMW will
 not improve viscosity,
 only injectivity

Polymer transport in porous media

- › Polymer retention
 - Assume Langmuir isoterms
 - Adsorption depends strongly on wettability
- > Inaccessible porevolume (IPV)
 - Fraction of pores too small for polymer invasion, depleted layer
 - Here, IPV = 0.20
- > Effective transport properties
 - Oil-wet reservoir (low adsorption) $v_p/v_T > 1$ for c > 500 ppm
 - Water-wet reservoir v_p/v_T < 1, critical only at ultra-low concentration (e.g., in low salinity water)
- > Minimize produced polymer
 - Use retention and injected concentration as design criterion

Vertical sweep efficiency

Delay breakthrough time

• Example: $\frac{k_1}{k_2} = 100$, at unit mobility reduction, $E_i = \frac{1}{2} \left(1 + \frac{k_1}{k_2} \right) = 0.505$ and at infinity viscosity

$$E_i = \frac{1}{2} \left(1 + \sqrt{\frac{k_1}{k_2}} \right) = 0.55$$

- Selective viscosity will dramatically improve sweep efficieency
- Selectivity exploited by salinity, temperature and permeability contrasts

The new class of EOR polymers

- Hydrophobically modified water solubles copolymers
 - Hydrophobic groups added to regular polymer backbone reacts with each other leading to intermolecular polymer network
 - Mobility reduction can in porous media due to formation of polymer network increase significantly
 - Mobility reduction depends at least on amount of associative groups, Mw, salinity and temperature

Mobility reduction in porous media

- › Constant rate vs. constant differential pressure
 - Flow behaviour at low flow rates deviates strongly from classic Darcy law flow
 - Demonstrate the possibility of maintaining nearly constant differential pressure at flow rates varying more the two order of magnitude and the behaviour is reversible

Mobility reduction – effect of oil

In presence of oil the associative interactions are weakend resulting in less mobility reduction and lower RF compared to Sw = 1 (dotted lines)

Effect on oil recovery

- High mobility reduction will improve the sweep efficiency towards piston-like displacement and reduce the tail-end production
- > High mobility reduction may be utilized to increase the capillary number $N_{ca} = k\nabla P/\sigma$, with the possibility of lowering Sor
- › Exp I
 - Brine, followed by regular ATBS followed by 1000 ppm associative polymer
- › Exp II
 - Brine followed by 500 ppm associative polymer

Oil recovery vs. capillary number

Optimization

 Define assosiative polymers which at injection condition behave as regular polymers (low mobility reduction and good injectivity) while high mobility reduction is triggered by temperature

Conclusions

- > Main mechanisms for EOR polymer flood are understood
 - Sweep improvement by lowering mobility ratio
- > The wide variety of EOR polymers allowing for optimization, e.g.,
 - Injectivity vs. mobility reduction
 - EOR potential vs. mobility reduction
 - Type of injection brine
 - Polymer loss vs. produced polymer
 - Why always choose HMw HPAM polymer?
- Commercial simulators are not fully ready for polymer does however only partly explain lack of field experience

