Neogene Uplift of The Barents Sea

W. Fjeldskaar A. Amantov

Tectonor/UiS, Stavanger, Norway

FORCE seminar April 4, 2013

Neogene Uplift of the Barents Sea

Figure 1a. Modelled ice sheet at Last Glacial Maximum; 1b. Calculated present rate of uplift for the Barents Sea (mm/yr).

A study by Tectonor, IRIS, VSEGEI, Royal Holloway University of London, and Cornell University

a.

Funding companies

The objective of the work was to improve our understanding of the timing, geometry and magnitude of the Neogene and Quaternary erosion and uplift of the Russian and Norwegian parts of the Barents Sea.

Outline

✓ Plio-Pleistocene glaciations - extent and timing

- ✓ Effects of glaciers
- ✓ Estimates/modelling of glacial erosion
 - ✓ Isostatic effects (tilting of reservoirs)
- ✓Temperature- og maturity effects
- ✓ Estimations of Neogene Erosion

Plio-Pleistocene glaciations

Deglaciation - last glaciation

20 000 BP

Glacial-Interglacial cycles

(A) The SPECMAP (Spectral Mapping Project) record based on five low- and middle-latitude deep-sea cores and (B) a composite record of four cores from the equatorial Pacific, the Caribbean, and the North Atlantic. Isotopic stages and substages are indicated; B/M shows the level of Bruncher Mahausum revores)

From deep sea sediments

At least 8 glacial-interglacial cycles over the last 800 000 years, and maybe 30 cycles since late Pliocene.

3 Plio-Pleistocene phases

Typical glaciations

Plio-Pleistocene Glaciations

3rd phase

Maximum possible ice extent and thicknesses for three periods of Plio-Pleistocene

Effects

Glaciations

- ✓ Surface temperature
- Thermal conductivity
- ✓Compaction
- ✓Isostatic effects
- ✓ Elastic effects
- ✓ Stress effects
- ✓ Erosion

Petroleum systems

- ✓ temperature
- ✓ maturity
- ✓ migration routes
- √leakage
- ✓ reservoir quality

Glacial erosion

Source rock is generally located at too low temperatures to be generating hc recently.

Quantifying the amount of erosion in the glacial period will be an important step in the direction of quantification of max burial (time and amount).

This is important for the understanding of petroleum systems in the Barents Sea.

Effects of glaciations – Glacial erosion

TECTONOR

Morphological modelling

Morphological modelling

Concentric pattern forms due to low ice velocity under the center, and more rapid basal ice velocity near the margins

Effect of ice streams with enhanced erosional capacity

Model of pre-glacial landscape with major drainage pattern

Illustration of the erosion model

Erosion modeling

Plio-Pleistocene Glaciations

3rd phase

Maximum possible ice extent and thicknesses for three periods of Plio-Pleistocene

Ice Thickness Module

Ice Thickness computed from:

- 1. Ice margin outline
- 2. Topography
- 3. Basal lithology
- 4. Ice velocity
- 5. Floating or frozen base
- 6. Marginal slope (specified)
- 7. Continental or ocean margin

Ice surface velocities

Shallow seismic

Zone of maximum glacial erosion

Maximum glacial erosion has stable position along the Atlantic coast, while eastern flank is migrating due to ice sheet grow and decay

Isostatic response

Archimedes of Syracuse

(<u>Greek</u>: <u>Ἀρχιμήδης</u>)

Archimedes is generally considered to be the greatest mathematician of antiquity and one of the greatest of all time

A buoyancy force arises when a solid object is placed into an (ideal)-liquid.

The buoyancy force is specified by Archimede's Principle which states: the decrease in weight of the object equals the weight of the liquid displaced by the submerged portion of the body.

Isostasy

© 2005 Brooks/Cole - Thomson

• The lithosphere in floating equilibrium on the asthenosphere is isostasy

Glacial Isostatic Adjustment

© 2005 Brooks/Cole - Thomson

- Vertical movement in response to changing burden is called isostatic adjustment
- The crust is subsiding due to the ice load

Glacial rebound

@ 2005 Brooks/Cole - Thomson

When the load is removed, the crust is experiencing uplift
until new equilibrium is established

Deglaciation model ('AA1')

20 000 BP

Calculated glacial isostasy

last 20 000 years

Observed palaeo shorelines

Post-glacial shorelines from Roddines, Porsangerfjord (north Norway)

Observed vs. calculated present rate of uplift

Calculated

Observed

Observed (Vestøl, 2006) - corrected for eustasy

Effect of ice model

Earth model:

 A low viscosity asthenosphere (2.5 x 10¹⁹ Pa s)
Lithosphere rigidity 5 x 10²³ Nm (40 km)

Plio-Pleistocene glacier and isostasy

< 1.0 Ma

Isostasy

Petroleum system

Isostatic effects on petroleum system

Basin in isostatic equilibrium during glaciation.

TECTONOR

Petroleum system is located in the area near the edge of the glacier.

What happens when the ice melts?

Isostatic effects on petroleum system

Basin in isostatic equilibrium during glaciation.

TECTONOR

Petroleum system is located in the area near the edge of the glacier.

Erosion and uplift

Glacial erosion and uplift

Conclusion-1

The isostatic effects of glaciers, glacial erosion/deposition are calculated. The Earth rheology (elastic lithosphere thickness and asthenosphere viscosity) is found from high resolution modelling of the rebound after the last glaciation. Based on this rheology it is shown that the tilting of the reservoirs in the western Barents Sea could be significant, up to 2m/km

Neogene and Paleogene erosion

Observed vitrinite reflectance

Time of max burial

Stratigraphy within missing section

Thermal conductivities of the missing section

Timing of Max burial?

Modelling of 2D transects

Aim:

temperature and maturity effects of Plio- Pleistocene glaciations and Neogene erosion

Effects of erosion on petroleum systems

SOURCE ROCK

1 km

2 km

3 km

4 km

Effects of erosion on petroleum systems

TECTONOR

Effects of erosion on petroleum systems

TECTONOR

Temperature effect of pre-glacial vs glacial erosion

Cell Temperature History

Vitrinite effect of pre-glacial vs glacial erosion

Pre-glacial versus glacial erosion

Prediction of pre-glacial erosion

2D lines

BMT – Basin Modelling Toolbox

An advanced 2D basin modelling system :

- Reconstruction of the basin evolution
- Fault restoration
- Chemical compaction
- Isostatic deflections (with flexure)
- Lithospheric thinning (with necking)
- Magmatic intrusions
- User guided salt movements
- Temperature/maturity effects

0Ma

Vitrinite reflectance gives us the opportunity to constrain the Neogene erosion