Multiscale petroleum research at IRIS

Tania Hildebrand-Habel & Niels Bo Jensen

Outline

- > IRIS Overview
- > IOR research at IRIS
 - COREC Centre for Oil Recovery
 - SBBU Center for Drilling and Wells for Improved Recovery
 - Application: National IOR Centre
- > Reservoir-scale research at IRIS

International Research Institute of Stavanger – Offices in Norway

40 years of Research and Development

- > IRIS is a client-oriented research institute
- Owned equally by the University of Stavanger and the regional foundation Rogalandsforskning
- > In 2006, IRIS replaced Rogaland Research (established in 1973)
- > Research and development within:
 - ENERGY
 - ENVIRONMENT (marine biology and biotechnology)
 - SOCIETY (social science and business development)
- > Clients:
 - Oil and service companies, public sector (esp. Research Council of Norway)
 - National and international
- > 210 employees, and 85 of the researchers hold a PhD degree

IRIS ENERGY: contributing to efficient and safe energy production

Research

- > Reservoir technology
- > Improved Oil Recovery
- Drilling and well technology
- > CO₂ storage
- > Renewable energy

Resources

- > Staff of 120
- Facilities
 - Ullrigg drilling facility (full-scale offshore type drilling rig with access to seven wells)
 - Virtual rig (realistic real time well modelling)
 - Petroleum laboratory (Special Core Analyses, petrophysical measurements, experiments at reservoir conditions)

IRIS ENERGY: cooperations for research and education

- > Close cooperation with the University of Stavanger
 - Education of bachelor, master, and PhD students
 - Common research projects
- > Close cooperation with industry partners
 - Understanding of basic mechanisms
 - Tools for improved oil recovery
 - Assisting in performing field pilots
 - Center for Oil Recovery initiated by ConocoPhillips, IRIS, and the University of Stavanger in 2003
 - Several industry partners as well as public funding (Research Council of Norway)
 - Research with focus on fractured chalk reservoirs
 - Understanding and optimising water injection
 - Potential for CO₂ injection at Ekofisk
 - Interaction of CO₂ and seawater with chalk
 - COREC received the IOR-prize for 2010 from the Norwegian Petroleum Directorate, NPD

IRIS IOR group: ca. 25 researchers

- > Understanding of basic mechanisms:
 - Pore-scale mechanisms, e.g., for CO₂-storage and EOR applications
 - Rock–fluid interactions, e.g., water weakening of chalk, relative permeability and capillary pressure curves
 - Different EOR technologies, e.g., effects of wettability, water chemistry, polymer and surfactant flooding
- > Tools for:
 - Optimising multiphase reservoir flow
 - Improving macroscopic reservoir sweep efficiency and water production management
 - Improving microscopic sweep efficiency
- > Pore-, core-, and reservoir-scales

Water weakening of chalk

- > Oil production from chalk fields (Ekofisk, Valhall)
 - ightarrow pore pressure depletion
 - ightarrow increase in effective stresses
 - ightarrow reservoir compaction
- > Seawater injection
 - ightarrow reservoir pressure stabilised
 - ightarrow subsidence rate decreased

<u>BUT:</u>

- \rightarrow water weakening effect on chalk
- \rightarrow continued reservoir compaction

Rock-fluid interactions in laboratory experiments

- > Rock mechanical experiments with water flooding
 - Measurement of deformation
- > Effluent analyses
 - Monitoring changes in water chemistry
- Comparison of cores prior to and after waterflooding
 - Textural and mineralogical alterations
- Geochemical modelling
 - Prediction of mineral under- or supersaturations, i.e., mineral dissolution and precipitation

Rock mechanics

Increased deformation of a chalk core due to seawater injection

Effluent analysis

Changes in water chemistry indicate chalk–seawater interaction

> More Ca²⁺ in effluent \rightarrow calcite dissolves

> Less Mg²⁺ & SO₄²⁻ in effluent \rightarrow magnesium and sulphate are retained in the core

Chalk cores prior to and after seawater flooding

IRIS

> Chalk dissolution and secondary mineral formation

Granular magnesite precipitates

Bladed-massive anhydrite precipitates

Geochemical modelling

- Simulation of seawater injection into chalk at high temperature and pressure predicts:
 - Precipitation of minerals (dolomite, huntite, brucite, magnesite, anhydrite, talc)
 - Dissolution of calcite and silicate minerals
- Successful matching of effluent profile
- Location of alteration in complex pore geometries can be predicted
- > Upscaling of modelling results to field scale
- Comparison with produced water composition

Water weakening of chalk

> Main conclusion:

Precipitation–dissolution processes represent an important contributor to the water weakening of chalk — and the seabed subsidence at the Ekofisk field

- "Geo" competency at IRIS proven indispensable for understanding the chalk-water interactions at Ekofisk
- Example for a multiscale, multidisciplinary project that benefits from the joint efforts of academia and industry

Centres at IRIS

> COREC = Center for Oil Recovery

 Increase oil recovery from producing fields by understanding the reservoirs and the relevant methods

> SBBU = Center for Drilling and Wells for Improved Recovery (SBBU)

Unlock petroleum resources through better drilling and well technology

Joint application: National IOR Centre

Research Centre for improved recovery of petroleum resources on the Norwegian Continental Shelf

«Stavanger is the place!»

- 70+ researchers (UiS-IRIS) with unique knowledge and expertise within IOR and reservoir characterisation
- > Strong competence in petroleum economics and environmental preservation
- Proximity between industry, petroleum authorities, and academia/research in Stavanger
- > Competence from large research programmes and COREC are crucial
- We have a consortium of the two core partners
 UiS and IRIS, additional corporative partners, and
 research partners
- > UiS is the host institution

BERGEN Reservoir Group

Geir Nævdal, Chief Scientist

Kristin Flornes, Research Director

11 researchers with background in Applied Mathematics Physics Reservoir Engineering Geology

Experts in

Improved reservoir management Data assimilation and inverse modelling Dynamic reservoir and well flow modelling History matching and ensemble based methods (EnKF) Production optimization Sedimentology and Diagenesis

Based in Bergen at Høyteknologisenteret

11. juni 2013

Background - The inverse problem

- Inverse problem: Adjust reservoir flow model so that model output match measurements (history matching).
- Our measurements are production and log data at the wells and seismic data.
- The production data: Uncertain rates (oil, gas, water) and pressure data.

Reservoir data assimilation: Integrated workflow & realistic geology

- > Provide reservoir models honoring:
 - Geological interpretation/ geostatistics
 - Seismic
 - Production data
 - Other data: 4-D seismic, Gravity, ...

Reservoir model and update

- 1. Geomodel (e.g. Petrel)
- 2. Decide what is to be estimated Initial parameterization Make ensemble (100 realizations)

γ^f

Facies model updating

> Problem:

- > Shallow-marine environment: coarse-sand/sand/fine-sand/shale
- > Using the EnKF to update the permeability directly smears out the channel
- > We would like to preserve the channel shape

Facies model updating and multi level methods

- Combine truncated Gaussian field modeling of background with level set approach to model channel
- > Improve shape preservation of channel
- > More effective representation of internal heterogeneities

Perm_x, Layer: 1, Member: 1

Perm_x, Layer: 2, Member: 1

Multiscale LSE

Carbonate Reservoir Geomodels

Database of samples and reservoir properties from a range of carbonate rocks

- More than 500 core plugs
- Sedimentary logs
- Fracture measurements in 3D
- Several hundred Gamma-ray measurements
- Thin-sections
- Poro-perm measurements
- Velocity and density measurements
- Diagenesis analysis
- LIDAR and Georadar datasets
- Synthetic seismics
- > Build reservoir models by integrating a range of different datasets
- > Education of 11 MSc and 3 PhD students
- > Publications

Reservoir studies

- > Recent projects
 - CO₂ Storage Potential of the Dunlin Group (CLIMIT/Gassnova)
 - Petrographic Study of Dunlin Group (Gassnova/Ross Offshore)
 - Fluid inclusion study of the Johansen Fm (Gassnova/Ross Offshore)
 - Review on current available knowledge and thinking regarding rates of loss of CO₂ from sub-sea geological formations (CLIMIT)

IRIS ENERGY: "geo" competencies and research

- Research at pore-, core-, and reservoir-scales
- > Laboratory experiments and modelling approaches
- Reservoir and outcrop rock characterisation
 - Petrography and thin section analysis
 - Mineralogy and diagenesis
 - Fluid inclusion studies
- > Reservoir characterisation and field scale simulation
 - Well test analysis and estimation of reservoir properties
 - Thermal conductivity measurements
 - Temperature history modelling
 - Flow modelling

Thank you for your attention!

Contact IRIS

Telephone: (+47) 51 87 50 00 E-mail: <u>firmapost@iris.no</u>

www.iris.no

