

Offshore Enhanced Oil Recovery (EOR): State of the Art and Experience Current UK Direction

David S Hughes

Principal Reservoir Engineer/EOR Specialist

Senergy

(david.hughes@senergyworld.com)

FORCE Workshop, NPD, Stavanger 30 May 2011

Outline

- Size of the prize (concentrating UKCS)
- Worldwide status of EOR
- Offshore EOR activity
 - Away from North sea
 - In and around North Sea
- Newer processes and UK strategy going forward
- Conclusions

Acknowledgement:

Although I'm not representing the UK Department of Energy and Climate Change (DECC) today, Senergy does assist them in relation to EOR strategy and technologies and I have their permission to report their latest position

Production from UK Offshore Oil Fields to Date

Production from UK Offshore Oil Fields to Date

Production from UK Offshore Oil Fields to Date

- Biennial review published in Oil and Gas Journal in April 2010
- Incomplete
- Worldwide EOR production amounts to ~ 3% of worldwide oil production (OGJ, 19 April 2010)
- ~900 MMstb per year (~240 MMstb per year from USA)
- USA split 45% thermal/55% gas (mainly CO2)
- Most of rest (led by Canada) is thermal
- Main trend going forward (particularly noticeable in USA) is likely to be a massive expansion of CO2 EOR if large amounts of CO2 become available from wide scale adoption of CCS
- Chemical EOR not popular
- Both Government and IOC funded EOR R&D declined

- Chemical EOR dwindled to only 3 small projects in 2010
- Decline in thermal, increase in gas (mainly CO2)

• BUT few reported offshore EOR applications

Leading Offshore Hydrocarbon Provinces

- offshore China, polymer, Bohai Bay (heavy oil field), 10-10000 cp, good experience of offshore chemical handling
- offshore Angola, polymer, Dalia/trial in Camelia (3-7cp oil)
- offshore Malaysia, alkaline-surfactant single well test, Angsi I-68, softening of water required, a lot on methodology but no results published (Petronas)
- Lake Maracaibo, alkaline-surfactant-polymer, La Salina (high acid number, 14.7cp, water softening even of low TDS lake water required)
- GoM, N2 injection Cantarell, Ku-Maloob-Zappfield (Petroleos Mexicanos)
- offshore Malaysia, immiscible CO2 (50%)/HCG reinjection, Dulang (Petronas)
- offshore Sarawak, CO2, Baronia RV2 (Petronas/Shell) planned pilot
- Not a lot!

- NCS, Microbial, Norne (Statoil) little recent information
- UKCS, HCG, Magnus (BP) ongoing
- NCS, HCG, Gullfaks (Statoil) also a number of other techniques trialed (and a number including surfactant-polymer still under consideration)
- UK,N,D CS, HCG, Alwyn North, Beryl, Brae South, Brage, Brent, Ekofisk, Oseberg Ost, Siri, Smorbukk South, Snorre, Statfjord, Thistle, Ula
- UKCS, polymer, Captain (>80cp, high perm) pilot ongoing
- UKCS, Bright Water, Strathspey, ultimately 317 Mstb expected at cost of \$3.5-4 per stb (Chevron) (also trialed in Arbroath)
- UKCS, Low Salinity, Clair Ridge planned and announced, other initiatives ongoing
- Detailed CO2 EOR evaluations in Forties, Miller, Gullfaks, Ekofisk and other fields but so far no trials, pilots of full scale implementation but further detailed studies ongoing

- Traditional
 - Gas (HC, CO2, N2)
 - Chemical (alkaline, surfactant, polymer, gels)
 - Thermal (may be relevant for viscous/heavy oils)
 - MEOR
- New techniques
 - Low salinity/hardness water flooding
 - 'Weak gels' or linked polymer solutions or LPS (in fact fair amount of field application as colloidal dispersion gels (CDG)
 - Bright Water (thermally activated strong gel)
 - Combinations

Results of UK DECC Consultation with Industry -EOR Prize by Process

From Jonathan Thomas, DECC, North Sea EOR – A UK Perspective, IEA EOR Workshop and Symposium, October 2010

- 2Co Energy (backed by same investors as Denbury Resources) have made a submission for funding from EU under NER300 for CCS project which involves studying the potential to use the captured CO2 for EOR in Talisman's CNS fields (2Co Energy press release 9 May 2011)
 - Other UK submissions also have an element of using captured CO2 for EOR
- 7 submissions for NER300 funding for CCS projects from the UK alone (4 in NE England, 3 in Scotland), each capturing up to 5 million tonnes CO2 per year! (DECC press release 10 May 2011)

Systematic Methodology to Rank Potential Low Salinity Opprotunities

Factors	Value	Certainty	Flag
Petrophysical			
Formation type	sandstone	high	
Kaolinite content of formation	between 6% to 15%	fair	
Kaolinite widespread in the reservoir	widespread (>70% reservoir volume)	high	
Wettabililty	intermediate or mixed	high	
Residual oil	>20%	high	
Permeability	medium (order of hundreds of mD)	high	
Porosity	high (>20%)	high	
Core samples available	plenty of good quality from relevant zone	high	
Facilities			
Fresh water source	plant on the platform	high	
Available space and weight capacity for the necessary kit	yes	high	
Possible to lay/adapt existing pipeline for fresh water delivery	not sure	high	
Pilot area available	yes	high	
PVT			
Oil properties - polar content - acid or basic	crude oil	high	
Oil viscosity	low	high	
Reservoir temperature	low	high	
Connate water composition	high salinity	high	

Overall Score

Strategy to Asses Suitability of Fields for Chemical (Water-Augmented) EOR Processes

EOR Method	Injected Water Treatment	Oil Composition	Reservoir/Formation
Low salinity	Reduce salinity and hardness	Important but mechanism not known - probably has to contain polar components	Distributed clays (kaolinite or illite/mica) need to be present. Must be no or minimal swelling clays (montmorillonite/chlorite)
Alkaline	Reduce hardness	Has to contain acid groups. As a guide acid number >0.2 mg KOH/g	Must be no or minimal swelling clays
CDG/LPS	Not clear if treatment required	Probably not important	Wide-ish pore/pore throat size distribution. On water wet side. High-ish Sorw
PAM/ HPAM	Reduce salinity and hardness	Not important but requires adverse mobility ratio	Temperature < 70°C Must be no or minimal swelling clays Requires moderate heterogeneity
Xanthan	Requirement to add biocide	Not important but requires adverse mobility ratio	Temperature < 90°C Must be no or minimal swelling clays Requires moderate heterogeneity
Surfactant	Need to adjust salinity and hardness to obtain optimal performance but not necessarily to low values. Addition of a co-surfactant or alcohol changes the optimal salinity/hardness	Surfactant 'cocktail' has to be formulated to work with the specific oil	The lower the clay content the lower the adsorption

- Amount of offshore EOR to date very disappointing
- We know where the remaining oil is (no need for exploration); we have infrastructure in place; but time limited opportunity
- Traditional and some newer EOR processes to consider
- Requires additional skills; training and experience an issue; no track record; IOCs have cut back on R&D
- Most likely requires more central planning and sharing of research and experience
- Implementation of facilities to adjust water chemistry (hardness and salinity) could act as a gateway to the implementation of other water based methods (either singly or in combination)
- Climate change imperatives are likely to make significant supplies of CO2 available

www.senergyworld.com

