

The World Leader in Polymer Technology For Enhanced Oil Recovery

Injection of polymer solution From surface to wellbore

Mechanical and Chemical degradation

NPD, Stavanger 30th May, 2011

- What are the possible degradations and the way to minimize them
- Chemical degradation : problem of Oxygen in presence of Fe 2+ or H2S
- Mechanical degradation :
 - Where : pump, ICD , perforation
 - How to minimize them

Possible degradations

SNF FLOERGER®

Impact of presence of oxygen : efficiency of F3P

Contribution of hydrolysis to viscosity is lower than chemical degradation

4

The medium term effect of Fe II and O₂: 30 days

80°C - poly(acrylamide-co-acrylic acid) Flopaam 3630S type 500 ppb O2, 5 ppm Iron II, synthetic sea water

The immediate effect of H₂S and O₂

Impact of O2 and H2S

no nitrogen blanketing, 4 ppm of O2 coming in the line H_2S : 2 ppm and 100 ppm

dissolution of the powder in a vessel under air atmosphere in presence of H2S

The medium term effect of H₂S and O₂

Aging results :

1 ppm of O₂ H_2S : 2 ppm and 100 ppm

7

Medium term effect of H_2S and $O_2(2)$

Aging results :

Low amount of O2 : **100 ppb of O**₂ H_2S : 2 ppm and 100 ppm

ITW vs. F3P

 \rightarrow <u>ITW</u> (Mixture of isopropanol 15% / Thiourea 7.5% and water 77.5%)

 \rightarrow Require storage, dosage and separate injection each component

ITW : HSE issues •Harmful •Flammability •Environment (spills, odor, etc)

ITW is efficient but induces limitations to be implemented in every EOR projects

F3P are ECONOMICAL

- Price of additives
- No limitationsNumber of additives
- No additionnal supply chain
- No additionnal Handling & Storage
- No additionnal Injection facilities

	FP3630S + ITW	F3P
Labeling polymer	none	none
Labeling IPA	Xi, F, R36, R67,	
	Fp = 12°C	
Labeling	Xn, R40, R63,	
thiourea	R51/53	

Mechanical degradation

- Where :
 - Pumps
 - Choke , Manifold
 - Completion : ICD
 - Perforations

Influence of shear rate in function of MW

SNF FLOERGER®

- Centrifugal pumps cannot be used for polymer solutions
- Overall degradation of the solution going through the pump and the choke is directly linked to the pressure drop applied to the solutions
- Triplex pump is leading to almost no degradation.
- PCP pumps need to be carefully selected :
 - Degradation is limited (less than 10%) if the correct rotor is used
 - This is due to internal leakage of the solution in the chambers of the pump
 - Internal leakage is specific to each solution and is linked to the discharge pressure drop

Chokes : Overdosage

Typical data generated with 2 polymers at 2 concentrations, for a given choke design and opening

This choke required a 15 to 60% overdosage depending on the pressure drop. The over dosage is reduced for lower MW.

- An ICD implementation must take into account parameters such as number of nozzle, size of nozzle, flow rate, but is manageable to minimize degradation
- Wire wrap liner
- Tests performed indicated no degradation through this completion liner. Even if flowrate was 35 times the one expected, the degradation was less than 10%

Perforations

Optimisation of the perforation : use high density shots per meter (20 to 40)

Conclusions

- Chemical degradation and mechanical degradation can be largely minimized
 - Mechanical degradation does not add up
- Choke remains the biggest problem , and if possible should be placed before the introduction of polyme solution
- Surface equipments needs to be design according guidelines such as :
 - Piping : Maximum speed of 2 m/s
 - Agitator : Maximum speed of impellers of 1.5 m/s
 - Triplex pumps : Maximum speed of non-return valves of 3 m/s
 - Choke :Limited diameter pipe before the choke ; Choke with one orifice only
 - Low shear valves

What is the real viscosity in the reservoir ?

Thank you

