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What iIsHPHT Reservoirs?

Temperature > 140-150 C ?

Fluid pressure > 50 MPa ?
With over pressure? 100 MPa?

Requirements :
Preservation of porosity at great depth due to retarded quartz
cementation( clay coatings micro quartz etc).

Cap rock integrety : Slightly permeable cap rock

or lateral drainage.

In most cases the quality of sandstone reservoirs
reaches critical values at about 4 Km depth (130 °C)

HPHT are exceptions to the rules of normal diagenesis.
There is a reason why there is still sufficient porosity at great depth
and why there is still oil or gas in the reservoir.

The diagenetic processes are the same in all basins, but the sediment
compositions and the temperature history vary greatly.
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Pore filling illite
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Pore-filling authigenic illite from a Jurassic
reservoir, Haltenbanken (4.2 km depth)

ekaolinite + K-feldspar = lllite + quartz + water
(>130 °C)
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Compaction of sedimentary layers with different initial composition.
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Burial diagenesis- Compaction of silicious sedimenets

Initial sediment composition ?
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Mechanical and chemical compaction during
progressive buria and uplift
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Meters from sea oor

Etive Fm velocity and density asa function of depth
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Primary clastic grain Quartz cement (overgrowth)
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Quartz cement with smooth crystal surfaces as overgrowth on
clastic grains
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Compaction due to quartz cementation at
constant temperature
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Natural fracturesin reservowsandstone (T|I je Fm Smearbukk Field). The
guartz grains are chlorite coated but quartz cement have grown from fractured
guartz From Chuhan et al. 2002
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Vertical or horizontal compaction
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Equal to the elastic strain

 |If the basement is shortened the overlying sediments will
compact horizontally and the horizontal strain will reduce
the build up of horizontal stress
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Sediment compaction — rock shrinkage

Bulk modulus = Stress/strain(AV)

If the strain AV is 0.001 or 0.1 % and the Bulk
modulus is 50G Pa the effective stress is
reduced by 50 MPa

k volume (V)= Solids (V¢)+ Fluids (porosity
Void Ratio = V¢/V; = ¢ /(1- ¢)

For isochemical reactions V¢ = const. I

AV =A ¢ , dV/dt = de/dt
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the horizontal
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to the vertical
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stress

Figure 18.6

Central North Sea fracture
gradient.

The fracture-pressure gradient is
the pressure required to generate
fractures where the minimum
stress (usually the horizontal
stress) and the tensile strength of
the rock are exceeded by the pore
pressure. In the North Sea, the
fracture gradient is slightly less
than the lithostatic gradient. The
fracture gradient can be identified

by plotting leak-off test data
against depth. In this figure the
data for several wells from the
central North Sea are plotted.
Given the principle of the leak-off
test, the data show that in the
North Sea the minimum stress is
horizontal and constitutes about
85% of the vertical stress,
increasing to 95% or more at
depths below about 4 km. See
Grauls (1997).



At great depth the compaction driven fluid flux is very low but
the permeabilities of shales are close to zero

y

Pressure
H VP =AP/H
Fracture-pressure
F= Fluid flux
(m3/m?/s)

T ﬁ¢ o7 Sedimentation rate 2.10-5 m/yr
F=( Edz) '3 Flux=1.5 1013 m3/m2s
Z Permeability(k)= 0.01 nD

F=k-VP/u At greater depth the compaction driven flux is
a function of temperature rather than effective stress At
constant ViSCOSity kand -VP va ry inversely- K. Bjgrlykke, Department of Geosciences



Compaction driven fluid fluxes in the deeper parts of
sedimentary basins
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Compaction

e Elastic Stress/strain compared with mechanical ductile strain
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The properties of sedimentary rocks are a function of provenance,

depositional environment and diagenesis. K. Bjgrlykke, Department of Geosciences



Conclusions

The physical properties of sedimentary rocks change continuously
during progressive burial and also during uplift and unloading.

Prediction of thedistribution of rock properties must be based on
the primary sediment composition and the burial histories.

Experimental compaction of sand and clay helpsto predict the physical
propertiesof sandstones and mudstones at moder ate depths.

Experimental compaction of carbonates may simulate both mechanical and
chemical compaction.

Compaction processes are also important for the permeability reduction in
shales(cap rocks) and quartz cementation here playsan important role.

The inversion from geophysical data, (including EM data) to rock properties

and fluid saturation requires a better data base for rock properties as a
function of mineralogy and textural relationships.

K. Bjgrlykke, Department of Geosciences



	�Diagenetic reactions during�deep burial in sedimentary basins. Consequences for differential stresses.�
	What is HPHT Reservoirs?
	Slide Number 3
	Slide Number 4
	Pore filling illite
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Compaction of Sand
	Slide Number 13
	Slide Number 14
	Quartz cement with smooth crystal surfaces  as overgrowth on clastic grains
	Compaction due to quartz cementation at constant temperature
	Slide Number 17
	Slide Number 18
	Vertical or horizontal compaction
	Sediment compaction – rock shrinkage
	Slide Number 21
	Slide Number 22
	Compaction driven fluid fluxes in the deeper parts of sedimentary basins
	Compaction
	Slide Number 25
	Slide Number 26
	 Conclusions

