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Capillary seals
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Where:

P, = threshold pressure (psi)

o = interfacial tension (Dynes/cm)
0= contact angle

R = pore throat radius (microns)

Top seals have small pore-throat sizes and
therefore can act as capillary seals
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Buoyancy Force (P,) (Capillary
Pressure, P,)

°* Buoyancy Force or
Capillary pressure (P,)
Membrane at seal capacity when pc=p increases Wlth helght
t
above free water level.
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Hg-Injection analysis
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* Hydrocarbon column heights often calculated from Hg-
Injection data assuming a water-wet top seal

* Shale samples frequently have threshold pressures
that can support very high column heights (>> km’s)
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| eakage along hydrofractures

* Pore pressure needs to :
overcome minimum
horizontal stress while \a
leakage occurs

(Y Approximate fthostatic

gradient 1.0 psift (2.3 glem®)

Depth (teet)

From Nordgard Bolas oispiriagery) 3
and Hermunrud, 2003 |
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Problems with existing methodologies

* Large regional databases may be needed to predict distribution
of pore pressure and hence hydrofracture formation

* Large regional databases of the capillary pressure
characteristics of top seals are needed to predict capillary
leakage

* Often capillary pressure measurements suggest top seals
shouldn’t leak

* Hydrocarbons often found in cuttings throughout top seal,

— Seems slightly inconsistent with localised flow through large
fractures

— Seems slightly inconsistent with an invasion percolation
leakage as would be expected via capillary leakage

* Arethere other leakage mechanisms?

* Arethere better methodologies to identify leaked
reservoirs?
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Shear wave splitting
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Seismic anisotropy & shear wave splitting

e Seismic anisotropy is the directional dependence in
seismic velocities

- Indicator of order in a medium
- Indicator of style of flow, stress regime or fracturing

Shear-wave splitting

CiPEG 3 e

UNIVERSITY OF LEED




Fracture size estimation using frequency-
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dependent shear-wave splitting
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Yibal field, Oman
« 1+ year experiment
« ~40 3C recelvers

e \Vertical arrays in 5
boreholes

« 22 days of data, 600
located events

Badlah  ARCO/PARTEX
Jabel Mad-ar

igseane.
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Frequency dependence of shear wave splitting

« Caprock: No frequency dependence - suggests length scales
smaller than 1um - rock is acting as a seal.
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« Reservoir: Frequency dependence suggests fractures of ~1m scale,
in agreement with outcrop and core anaIyS|s
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Valhall Field - Background

VALHALL FIELD:
SIMPLIFIED STRATIGRAPHIC COLUMN
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Valhall Field - Background

ANDEI-14

150

Figure 6: The presence of a low velocity gas-charged
Miocene diatomaceous interval creates a "gas cloud”
effect that distorts the seismic time data.

(from Barkved, 2003) (from Kristiansen, 1998)
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Valhall microseismic experiment

° 2 month experiment, 6 receivers, 3 component, Vertical array,
20 m spacing, 324 Located events

* Initial analysis suggested distributed in two diffuse clusters
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Splitting results - location and fast direction
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Temporal variations in anisotropy
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Frequency dependence of S-wave splitting

Yibal Reservoir:

» Results for carbonate
reservorr.

* Clear freg-dependent
anisotropy

Valhall Caprock:

* Results for overburden
* Low amount of
anisotropy

* No obvious freq-
dependent anisotropy
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Potential implications of shear wave
splitting results

Gas cloud above Valhall and oil within cuttings provides
evidence of hydrocarbon leakage from structure

Temporal variation of shear wave splitting and lack of
frequency dependence in overburden of Valhall suggests
presence of microcracks

Overpressures immediately above the reservoir approach
fracture gradient

Is it possible that overpressures are causing dilation of pore
space in overburden (i.e. microfracture formation) that reduces
the capillary entry pressure of the caprock?

In other words, could leakage be occurring by an hybrid
leakage mechanism somewhere between large-scale
fracture formation and pure capillary leakage?
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Permeabllity vs confining pressure

° Experimental data
shows dramatic
Increase in single-

Westerly granite

o water 400 bars

phase permeability as S Ve
P, reaches confining « argon 50 bars

pressure

* |n nature this is
equivalent to P,
approaching S, i,

2 3 4

P, kb

Fig. 5. Permeability k as a function of effective confining pressure P. Length of short bars
indicates probable errdr for each measurement.

From Brace et al., 1968
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Petroleum leakage from reservoirs

°* Two end-member mechanisms for leakage
described as points of reference

— Leakage along faults and fractures at
hydrostatic pore pressures
 Leakage requires brittle rheology

* Important in deep/hot reservoirs and those that
nave experience massive up-lift

— Leakage through fractures in ductile caprock
* Requires P, to exceed Sy,

« Requires large amount of pressure support to
Keep fractures open during leakage
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Leakage distribution in North
Sea/Haltenbanken
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* High incidence of
leakage to west of
Haltenbanken

* Moderate incidence of
leakage towards south
of Central Graben

° Low incidence of
leakage in northern
North Sea

UNIVERSITY OF LEEDS

CIPEG




Leakage distribution in North
Sea/Haltenbanken
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Conclusions

Passive seismic monitoring has revealed that shear
wave splitting occurs in the overburden of Valhall

The lack of frequency dependence may indicate the
presence of distributed microcracks/dilated grain
boundaries within the overburden

The Valhall caprock contains a gas cloud and oill
within cuttings providing evidence of leakage

Integration of observations may indicate an hybrid
mechanism for leakage of caprocks that is
somewhere between the formation of large-scale
hydrofractures and pure capillary leakage
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Conclusions

Considerable drive is required to keep fractures open
In ductile caprocks for extensive hydrocarbon
leakage to occur

— Drive should therefore be considered when risking top
seal leakage

Jurassic sediments in western Haltenbanken have
ample drive and have experienced considerable
leakage

Leakage Is not as common in northern North Sea
where there is less drive for leakage

Leakage iIn HTHP reservoirs in Central Graben is
Intermediate
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