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Interest in the literature

full waveform inversion related publications, google scholar 10/2021
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difficulties and solutions through decades

e data type

e cycle-skipping

e multi-parameters sensitivity and non-linearity
e FWI with reflections

e computational cost

e high frequency FWI
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3.5 Hz: and (0 after six frequencies from 3.5 to 7.0 Hz were used.

Sirgue et al. (2010)

e In the 2000’s: first 2D and 3D applications
from long-offset surface data (reflections and
transmission)



Reflection and diving waves: requi t of anisotropy
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all waves-types needs to be fit: anisotropy is com-
pulsary to account all propagation directions



Cycle-skipping

Virieux and Operto (2009)

Time (s)

(a)

(b)

(c)

(d)

(e)

~_ -

Bunks et al. (1995)



cle-skipping: hierachical approaches
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Cycle-skipping: kinematics misfit functions

2000 m/s 4000 m/s

WET from Luo and Schuster (1991)

but also Tape et al. (2009); Fichtner et al. (2008) in
seismology, or dynamic-time warping (Ma and Hale,
2013)

More recently in the industry: Adjustive FWI
(Schlumberger), Time Lag FWI (CGG), Travel Time
FWI (TGS)
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: misfit functions

Adaptive Waveform Inversion from Warner and Graph-Space Optimal Transport from Métivier
Guasch (2016) et al. (2018, 2019)
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Cycle-skipping: misfit functions

Vp at 7 Hz- init 1D - GSOT

Graph-Space OT applied to 3D OBC data from the
Valhall field (Pladys et al, sub), from 1D initial model
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ing: misfit functions

Vp at 7 Hz- init 1D - GSOT

Graph-Space OT applied to 3D OBC data from the
Valhall field (Pladys et al, sub), from 1D initial model

e despite all those efforts, as well as model
extention approaches (WRI, source-extention,
WEMVA-based approaches), is cycle-skipping
behind us?

e maybe for P-wave (with 'identification)?

e what about very complex targets?
surface-waves? multiples?
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Multi-parameter FWI: exploiting amplitudes

Vi (km/s)
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Kamath et al. (2021)
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Multi-parameter FWI: exploiting amplitudes

e Waves are sensitive beyond V,. Some attempts
to reconstruct more, but is it a global trend?

e Multi-componant data (OBS, OBC) should

allow to go beyond Vp only. Do we have
numerical optimization do perform

multi-parameter inversion (Hessian) ?

e high-frequency should also more info on
multiple parameters down to the reservoir
scale.

Kamath et al. (2021) 14



Exploiting reflections for low-K
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Exploiting reflections for low-K

Location in km Location in km
90 30 60 90 120 150 00 30 60 90 120 150 CYCLE # 9

20
E 20
58 a0 40
3 — —
60 60
s il . (b)
—
: \/ Location in km Location in km
00 30 60 90 120 150 00 30 60 90 120 150
reflector | 20
00 00
£20 20
< \ f
=
Za0 a0
s =
60 60
80 (C) 80 (d) True macro Vp Imaged Vp

Joint FWI from Zhou et al. (2015) that combines

RWI from Xu et al. (2012),
( ) RWI and diving-waves FWI

inspired by the MBTT (Chavent et al., 1994)

15



Exploiting reflections for low-K
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HPC Challenges

e limitation of 3D modeling at early times
— most early applications in 2D

e intrisic cost of the 3D forward problem
~Cx1/\=Cxft/v*
e wave physics  C (and N\ V in elastic)

e shot encoding/shot selection

e imaging condition challenges for the correlation
of both fields(Symes, 2007; Anderson et al.,
2012; Yang et al., 2016; Komatitsch et al.,
2016; Robertsson et al., 2021, among others)

Backward reconstruction

Adjoint simulation

Foward simulation
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Forward wavefield
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Yang et al. (2016)
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(¢) 100 Hz FWI reflectivity model
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Current trend: push FWI

e —

(¢) 100 Hz FWI reflectivity model

Warner et al. (2021)

FWI can be used as a single consistant tool to
replace VMB + migration

beyond the workflow efficiency and the
possible qualitative interpretation, what is the
meaning of the quantitative velocity?

Would that make sense to push elastic FWI to
high frequency for detailled reservoir
characterization? downscaling?

is homogeneization theory required when
reconstructing velocity model on several
octaves?
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What about uncertainties?

e Curse of dimensionality in 3D... but RIMCMC
seems appealing in low frequency (Sen and
Biswas, 2017)
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What about uncertainties?

‘Standard Deviation

(a) Final model (b) Standard Deviation

Figure 3 Final model and standard deviation.

e Curse of dimensionality in 3D... but RIMCMC
seems appealing in low frequency (Sen and
Biswas, 2017)

e Probing the Hessian... with it cost
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Fang et al. (2014, 2018)
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hat a uncertainties?
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Other challe

ging perspectives for FWI

e 4D FWI for monitoring: field
monitoring, CCS, H2, ...

Zhou & Lumley (2021)
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Other challenging perspectives for FWI

e 4D FWI for monitoring: field
monitoring, CCS, H2, ...

e near-surface
characterization /surface waves
(wind turbine foundation?)

e sparse/cheap acquisitions? from

ambiant noise?

Nouibat et al (in prep)
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