

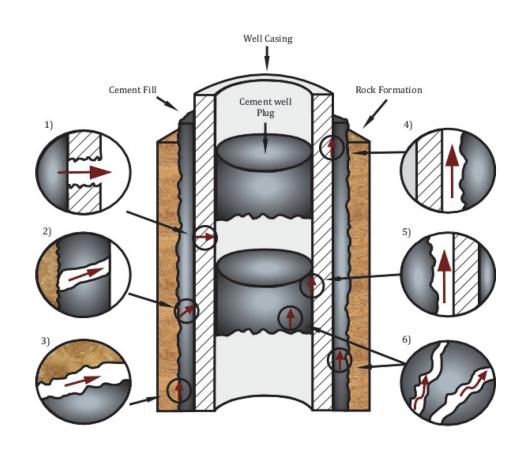
In-situ Laboratory Wellbore Cement Integrity in Simulated Field Environments for CCS: Testing and Remediation Approaches

Amir Ghaderi | SINTEF

Importance of Well Integrity

Wells are primary potential leakage pathways, critically affecting:

- Hydrocarbon plug and abandonment (P&A)
- ▲ CO₂ and energy storage


Well integrity is essential for long-term success:

- Cement failure behind casing is a major leakage source
- ▲ Common leakage paths:
 - Casing-cement and cement-formation interfaces
 - Fractures or mud channels in cement bulk

Effective prevention and remediation of leaks is vital for:

- ▲ Large-scale storage implementation
- Successful P&A operations

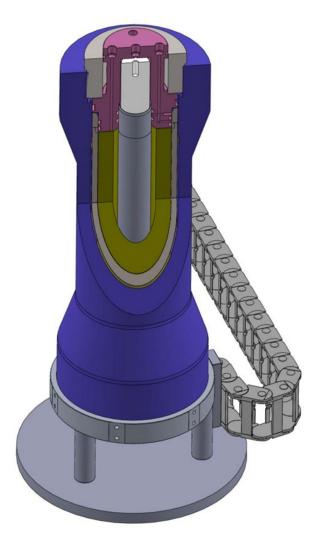
Post-abandonment, wells require permanent barriers across the full cross-section — analogous to restoring the caprock

Study objective and experimental approach

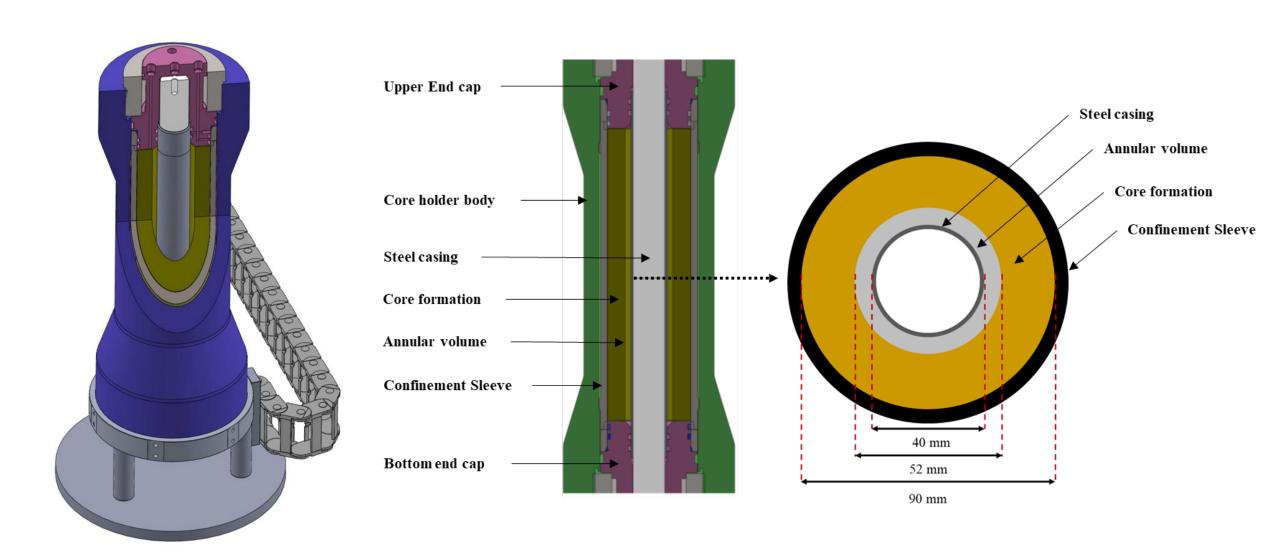
Focus of This Study:

Investigate cement integrity failure mechanisms and remediation methods

Approach:

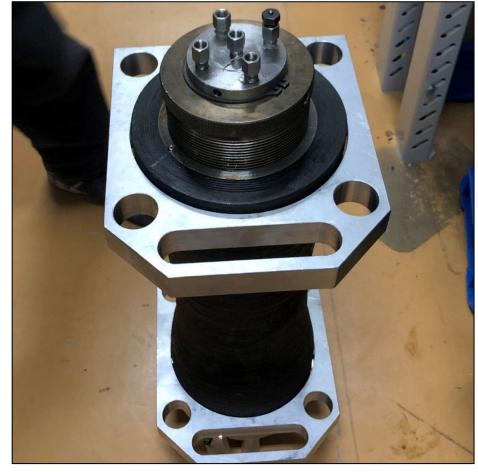

Experimental testing using the advanced ECCSEL Well Integrity setup

- ▲ This setup:
 - Recreates realistic field conditions at lab scale
 - Provides a controlled environment for detailed analysis
 - Supports evaluation of both failure processes and repair strategies



- ▲ In-situ imaging under X-ray CT
- ▲ Fluid flow core flooding and permeability measurements
- ▲ Application of remediation materials/fluids
- Annular in-situ cementing and fracking
- ▲ 3.7" x 12" cylindric core, 1.6" steel casing

Core sample	L 290 mm, OD 90 mm, ID 52 mm
Casing	OD 40 mm, ID 37 mm, L 365 mm
Confining pressure	Up to 200 bar
Casing pressure	Up to 500 bar
Pore pressure	150 bar



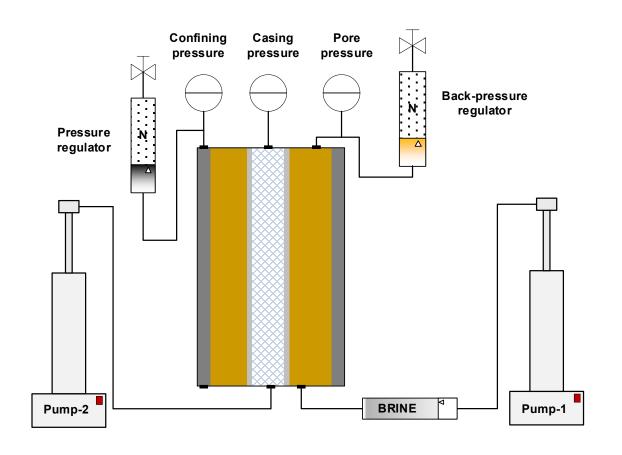
ECCSEL Well Integrity Setup

A schematic overview of the flow and pressure setup

Pump 1:

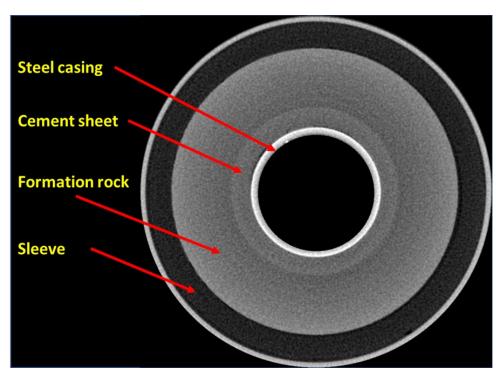
▲ Used to inject the brine into the rock sample and for maintaining the desired pore pressure through the entire experiment

Pump 2:

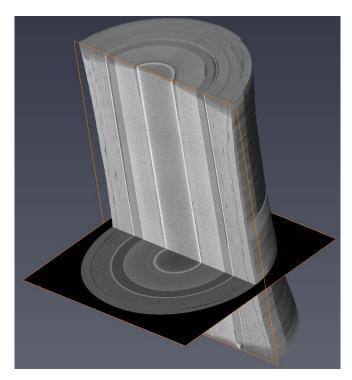

Used to control the casing pressure

Confining pressure:

- Maintained through a buffer
- Pressure regulator: To maintain constant confining pressure


Pore pressure

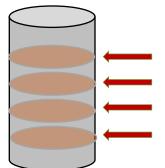
Maintained through back-pressure regulator



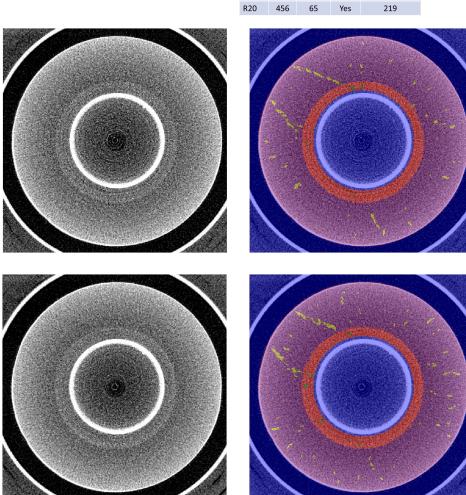
2D planer cross section

The vertical setup

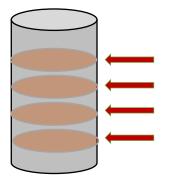
- Various components in the experiment:
 - steel casing, the cement sheet, the rock formation
 - and the sleeve separating the confining pressure from the pore pressure could be distinguished easily.



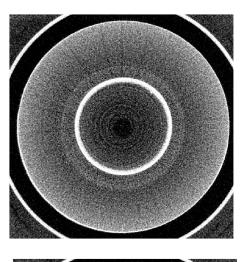
- Pressure cycling in the casing
 - ▲ Interval [0, 450 bar]
 - ▲ Casing pressures
 - ▲ 0, 50, 150, 250, 300, 350, 400, 450, 456 [bar]
- Before each increase, step down to pressure in the previous step
- Abbreviations
 - ▲ P_c= Casing pressure
 - $Arr P_{sl}$ = Sleeve/confining pressure
 - ▲ P_{pore} = Pore pressure

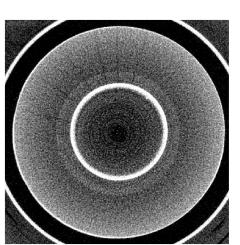

Run #	P _c [bar]	P _{sl} [bar]	Frac	X-ray image [min]
R	50	80	No	
•••	•••	80	No	
R14	300	85	No	6
R15	350	85	No	6
R16	400	85	No	6
R17	450	85	No	6
R18	450	65	<mark>Yes</mark>	6
R19	450	65	Yes	6
R20	456	65	Yes	219

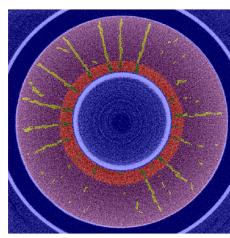
R17 P_c=450, P_{sl}=85, P_{pore}=50

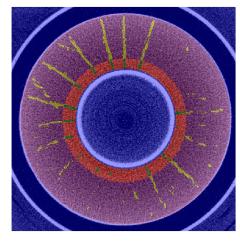


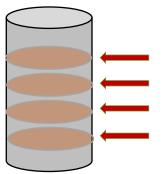
Run #	P _c [bar]	P _{sl} [bar]	Frac	X-ray image [min]	
R	50	80	No		
		80	No		
R14	300	85	No	6	
R15	350	85	No	6	
R16	400	85	No	6	
R17	450	85	No	6	
R18	450	65	Yes	6	
R19	450	65	Yes	6	
R20	456	65	Yes	219	

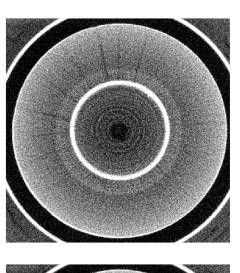


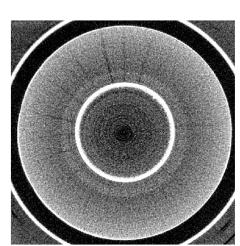

R18 $P_c=450, P_{sl}=65, P_{pore}=50$

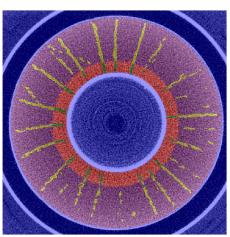


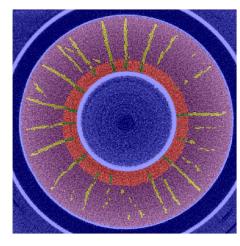

Run #	P _c [bar]	P _{sl} [bar]	Frac	X-ray image [min]	
R	50	80	No		
		80	No		
R14	300	85	No	6	
R15	350	85	No	6	
R16	400	85	No	6	
R17	450	85	No	6	
R18	450	65	Yes	6	
R19	450	65	Yes	6	
R20	456	65	Yes	219	

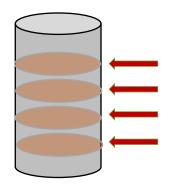


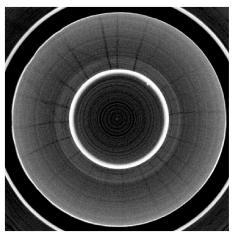


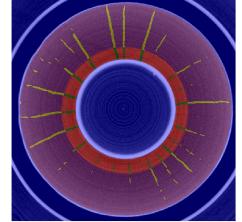

R19 P_c=450, P_{sl}=65, P_{pore}=50

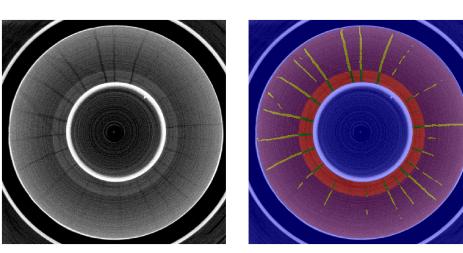


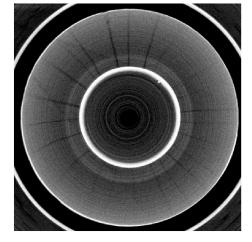

Run #	P _c [bar]	P _{sl} [bar]	Frac	X-ray image [min]	
R	50	80	No		
		80	No		
R14	300	85	No	6	
R15	350	85	No	6	
R16	400	85	No	6	
R17	450	85	No	6	
R18	450	65	Yes	6	
R19	450	65	Yes	6	
R20	456	65	Yes	219	

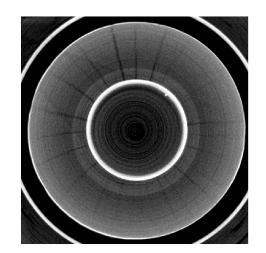


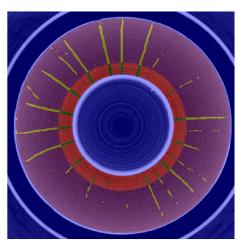


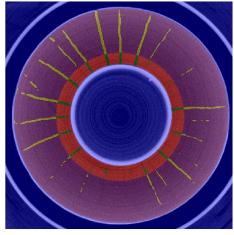

R20 P_c =456, P_{sl} =65, P_{pore} =50

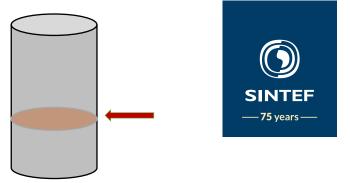


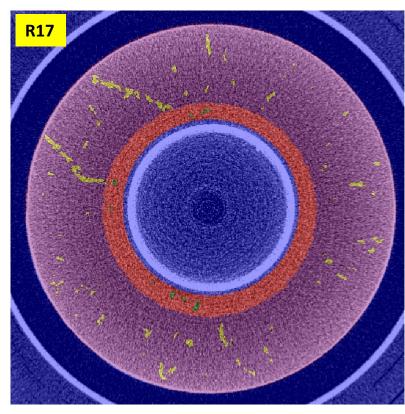

Run #	P _c [bar]	P _{sl} [bar]	Frac	X-ray image [min]	
R	50	80	No		
		80	No		
R14	300	85	No	6	
R15	350	85	No	6	
R16	400	85	No	6	
R17	450	85	No	6	
R18	450	65	Yes	6	
R19	450	65	Yes	6	
R20	456	65	Yes	219	

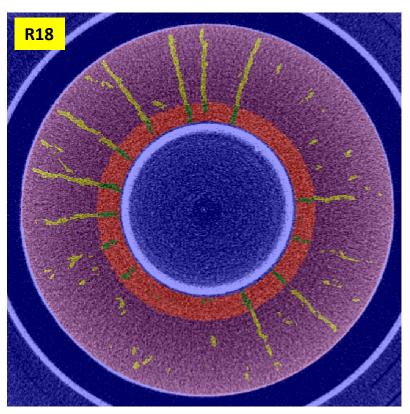




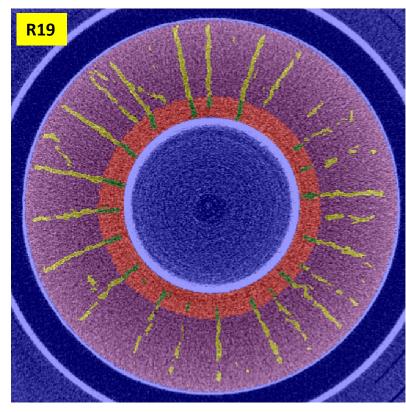








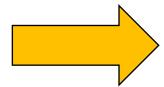
Stages of fracture development

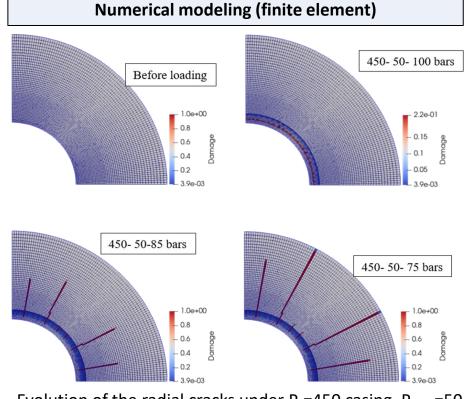


P_c=450, P_{sl}=85, P_{pore}=50

P_c=450, P_{sl}=65, P_{pore}=50




P_c=450, P_{sl}=65, P_{pore}=50



Measurement vs Numerical results

▲ Comparison with an earlier experiment

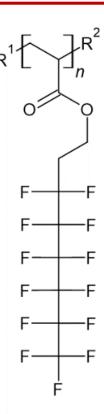
Evolution of the radial cracks under P_c =450 casing, P_{pore} =50 and different confinement pressures P_{sl} =0, 75, 85, 100 bars

Polyfluoroacrylate (PFA) polymer as P&A agents

Context:

▲ Viscosification of CO₂ for Mobility Control

- ▲ High solubility in CO₂
- ▲ Is the only known high molecular weight (Mw>200 000) polymer that can dissolve in dense-CO₂ above 1 wt.%

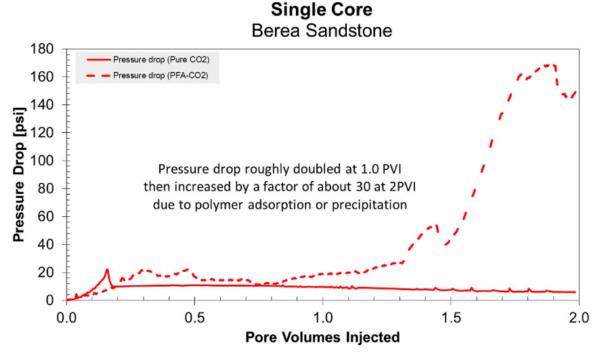

Polyfluoroacrylate (PFA) polymer as P&A agents

Context:

▲ Viscosification of CO₂ for Mobility Control

Characteristics:

- Completely Amorphous
- Elastic
- Extremely sticky
- Water repellent
- Oil repellent
- CO₂ soluble


Hydrolysis – Perfluorohexanoic acid (PFHXA) more benign than perfluorooctanoic acid (PFOA)

Polyfluoroacrylate (PFA) polymer as P&A agents

Context:

▲ Viscosification of CO₂ for Mobility Control

From Zaberi et al. 2020

- PFA 1 wt.% in CO₂,
- q = 0.25 ml/min, 3000 PSI (206.8 bar) at 25°C
- Core = 31 mD Berea sandstone

Question 1

Could PFA-CO₂ solutions have a potential use for near-wellbore conformance control?

Question 2

How PFA-CO2 mixtures will behave on cement-cement cracks?

Question 1

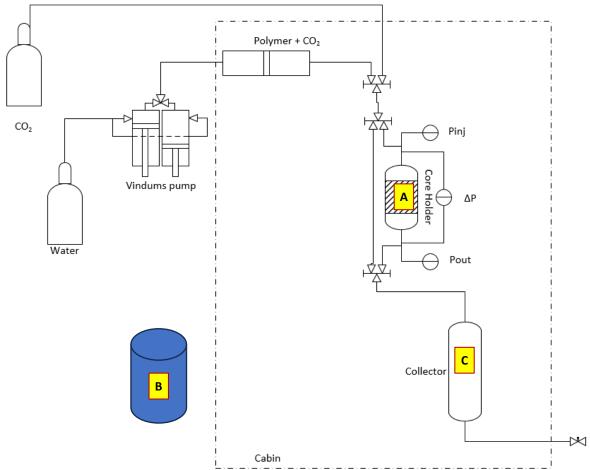
Could PFA-CO₂ solutions have a potential use for near-wellbore conformance control?

Question 2

How PFA-CO2 mixtures will behave on cement-cement cracks?

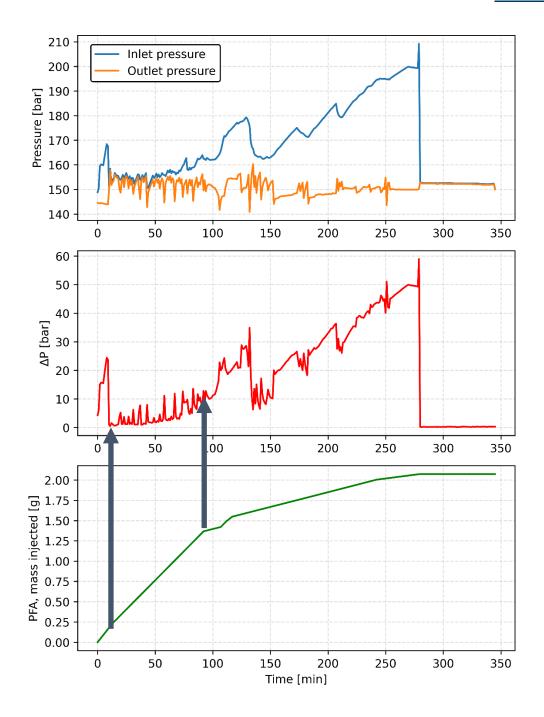
Answer:

- 3 cement samples
 - ½ inch diameter
 - Ca. 80 mm length
 - Split longitudinally in two parts
 - Fractured in several pieces
- PFA/CO₂ 4.0 wt.%


Answer:

- 3 cement samples
 - ½ inch diameter
 - Ca. 80 mm length
 - Split longitudinally in two parts
 - Fractured in several pieces
- PFA/CO₂ 4.0 wt.%

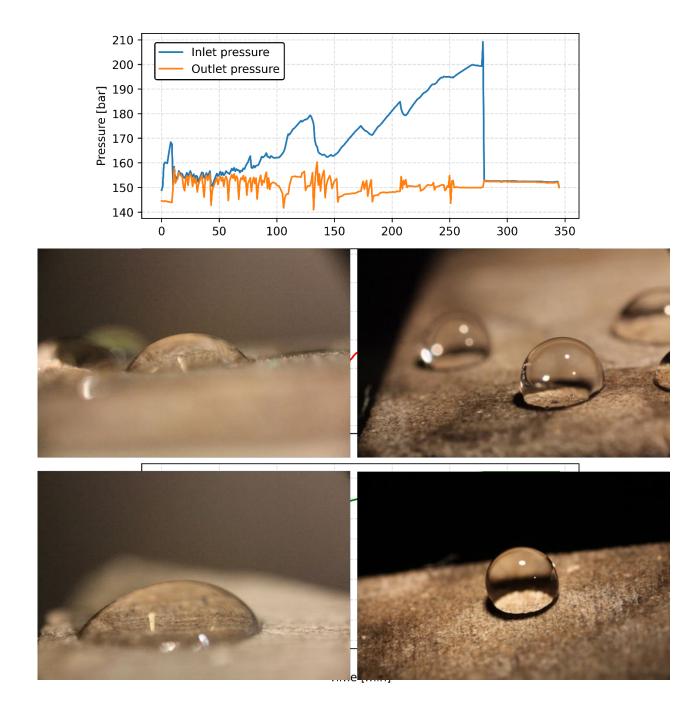
Mini-experiment



- Sample A:
- Sample C: Placed in the collector
- Sample B: Placed in a bottle, submerged in PFA/CO₂ mixture (24h)

Answer:

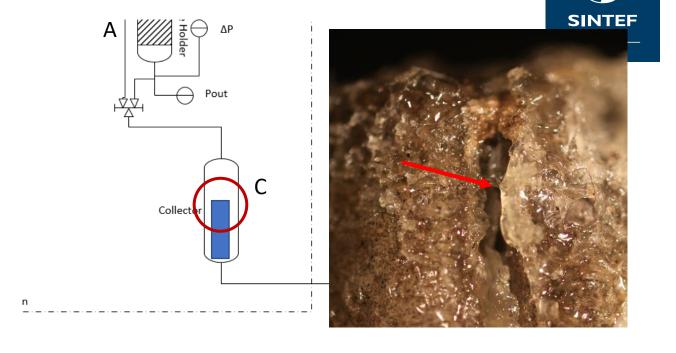
Sample A: Flooding results

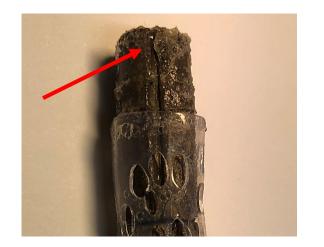

- All the pieces of cement were easily separated, without evidence of PFA adsorbed on the surfaces
- How was the flow through the core blocked? Where is the PFA?
- Wettability tests with distilled water
 - PFA did clearly adsorb onto the cement surface in some zones of the surface area

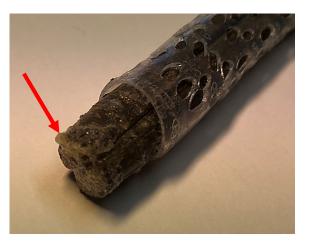
Answer:

Sample A: Flooding results

- All the pieces of cement were easily separated, without evidence of PFA adsorbed on the surfaces
- How was the flow through the core blocked? Where is the PFA?
- Wettability tests with distilled water
 - PFA did clearly adsorb onto the cement surface in some zones of the surface area



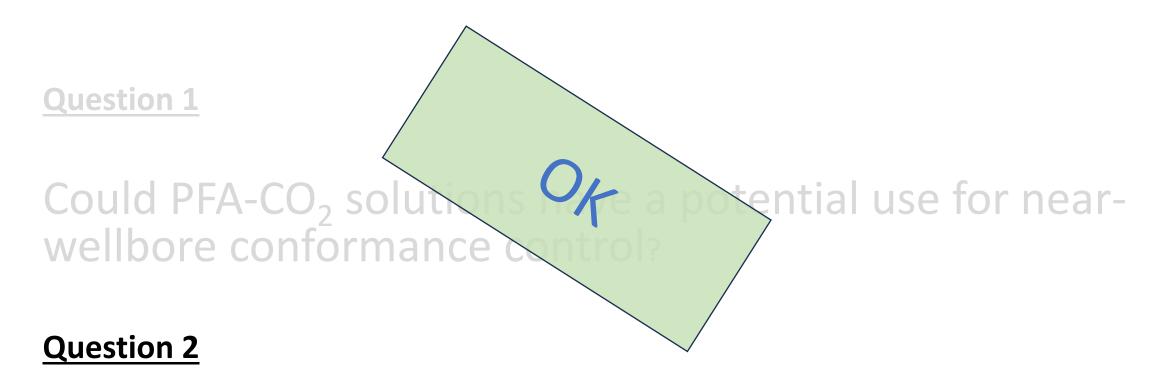



Answer:

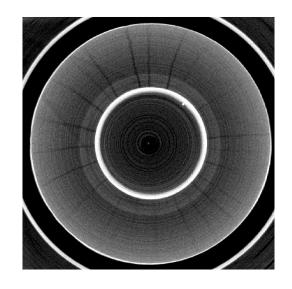
Sample C: In collector

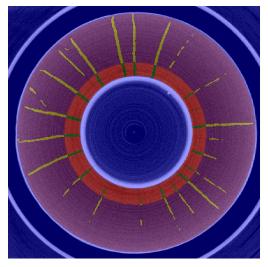
- PFA on the inner walls of the collector
- Marked in red is the area showed in the pictures
- PFA identified

Answer:


Sample B: Submerged

- The crack volume was not fully occupied by the PFA.
- Instead, PFA "spiderweb" structures were seen within the crack

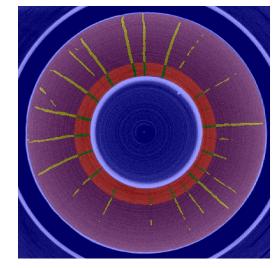

How PFA-CO2 mixtures will behave on cement-cement cracks?



Remediation – Well Integrity Setup

▲ Procedure (at field conditions):

- ▲ The fractured core was flooded with brine
- ▲ Permeability determination
- ▲ Injection (pre-flush) of 0.2 PV of CO₂
- ▲ Injection of 1 PV of 4wt.% PFA in CO₂
- ▲ Core closed. Aged for 65 h
- Permeability determination with brine



Remediation – Well Integrity Setup

▲ Procedure (at field conditions):

- ▲ The fractured core was flooded with brine
- ▲ Permeability determination
- ▲ Injection (pre-flush) of 0.2 PV of CO₂
- ▲ Injection of 1 PV of 4wt.% PFA in CO₂
- ▲ Core closed. Aged for 65 h
- Permeability determination with brine

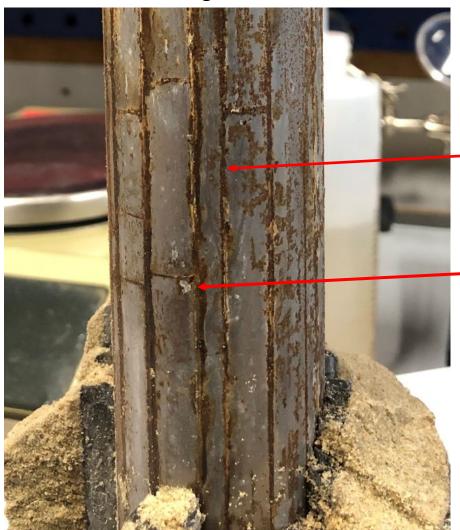
Results

- ▲ 1PV PFA/CO₂ 4wt.% mixture decreased systems permeability from 0.99 D to 0.27 D
 → 73% reduction
- PFA observed adsorbed in all spaces/surfaces:
 - Rock-rock, cement-rock, cement-cement, cement-casing.

Meas.	Information	P _{sleeve} [bar]	P _{process} [bar]	T[°C]	Perm [Darcy]
1	Before flooding	55.65	Atm	22.1	1.12
2	Before flooding	85.41	Atm	22.1	0.87
3	Before flooding	85.07	5.25	22.1	1.05
4	Before flooding	55.09	7.61	22.1	1.01
5	Before flooding	152.15	106.31	22.1	0.99
6	After PFA/CO ₂	150.25	106.05	22.1	0.27

Remediation – closer examination

PFA



Casing initial state

Casing removed

casing corrosion

PFA

Could PFA-CO₂ solutions We a potential use for near-wellbore conformance control?

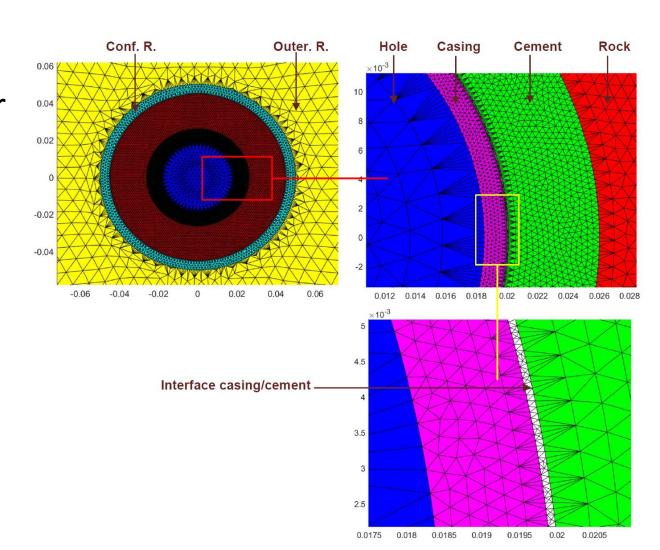
Question 2

How PFA-CO2 mixture cement cracks?

Kehave on cement-

Summary

- ▲ A robust experimental setup for studying near wellbore integrity is capable of replicating field conditions
 - ▲ The setup integrates in-situ capabilites with simultanous X-ray imaging
- ▲ Cement integrity failure and its remediation was investigated in a series of tests relevant to field condition
- ▲ Remediation with CO₂-PFA mixture:
 - ◆ Observations suggest that the PFA/CO₂ mixture effectively seals pore spaces and interfaces
 - ▲ Highlighting its strong potential as a candidate material for P&A applications

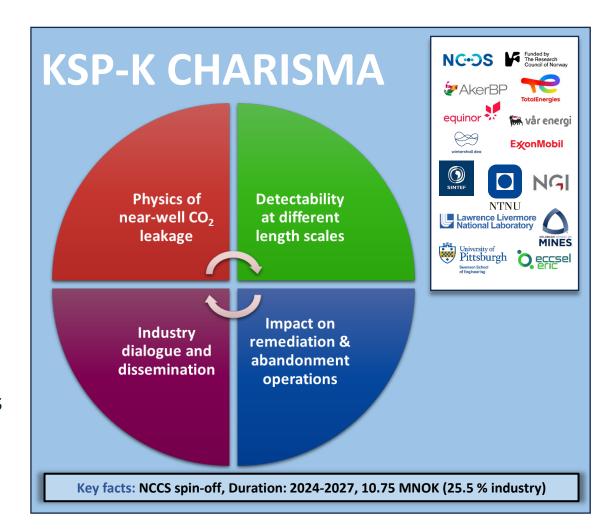

Relevant questions

Modeling

- ▲ Robust geomechanical model for the lab experiments
- Upscaling to field scale

Remediation

- ▲ Possible benchmarking with altenative remediation strategies
 - ▲ Self healing cement
 - ▲ CO₂-fracture healing



Outlook

Continued Study in Relevant Projects

- ▲ NFR Funded KSP Project: CHARISMA
 - ▲ CHARacterization and 4D Imaging of near well CO₂ flow in fractureS and Micro-Annuli
- **▲** Further Instrumentation
 - ▲ Well Integrity setup with fiber optics
- Knowledge transfer to near wellbore monitoring
 - ▲ Cement and formation properties before and after integrity failure (e.g., changes in Young's modulus, anisotropy, etc.)
 - Quantifications of borehole wavefield response

Acknowledgement

Funding for this work was provided

▲ SECURe project

▲ the European Union's Horizon 2020 research and innovation program under grant agreement No. ENER/H2020/764531/SECURe,

▲ RETURN project

▲ Funded through the ACT-programme (Accelerating CCS Technologies), Grant number 327322

▲ CHARISMA project

▲ (RCN no. 344541), and the NCCS Centre (RCN no 257579/E20), and the industry partners associated to those projects for funding the experimental effort and supporting the analysis of data.

Thank you