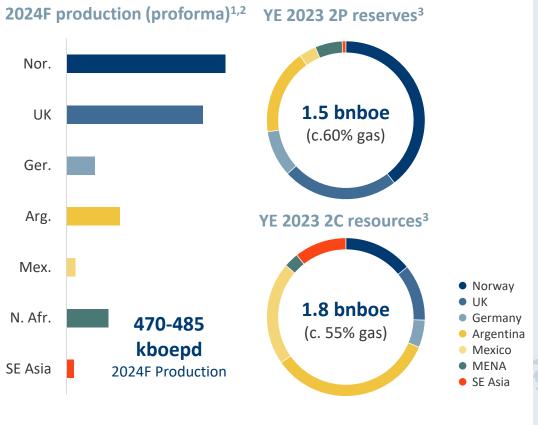
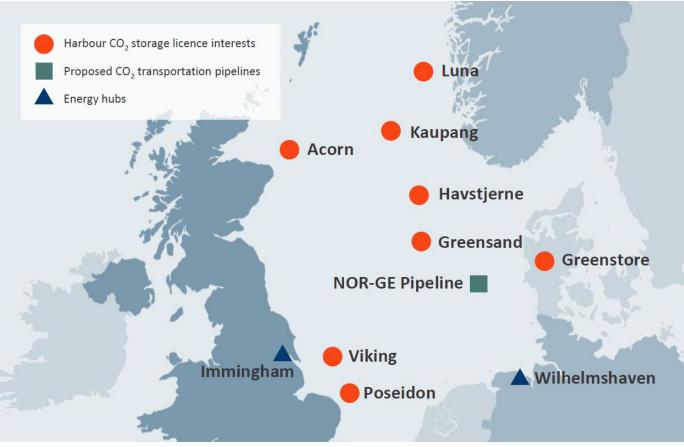


Paper Number SPE-227891-MS

9/6-1 Havstjerne P&A Design – Long-term Study Of CCUS Cement Designs Under Static And Cyclic CO₂-Conditions

Oliver Czuprat, Yasser Haddad, Gregory D. Dean, Pat A. Kelly and Tore M. Gabrielsen




FORCE - CCS Legacy Wells Seminar 19 & 20.11.2025
Presented by Christian Allerstorfer

Harbour Energy at a glance

Harbour is one of the world's leading, global independent oil and gas companies

c. 8 years

YE 2023 2P reserves life⁴

\$455 million
Annual dividend

<15 kgCO₂e/boe 2024F GHGi proforma^{1,5}

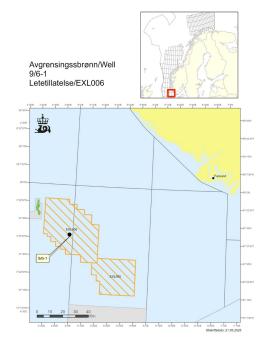
New CCS BU

Capitalising on leading CCS storage position in Europe

c. 5,000

Workforce (employees and direct contractors)

¹ Proforma reflects 12 months contribution from legacy Harbour assets and the Wintershall Dea portfolio. ²Management estimates. ³ YE 2023 D&M CPR & management estimates. ⁴ YE 2023 2P reserves, divided by mid-point of 2024 pro forma production. ⁵Net equity share basis.


9/6-1 Havstjerne

Key Objectives:

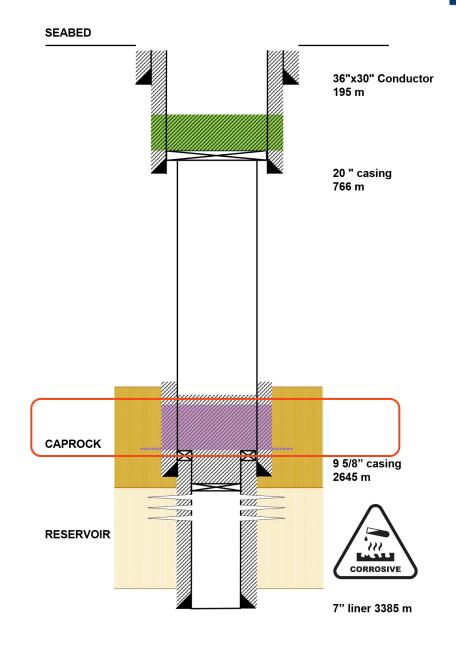
Prove sufficient injectivity, capacity and containment for main reservoir by ...

- Cap rock strength measurement
 - XLOT
 - Caprock core
- Acquire reservoir property data
 - E-line logging
 - Core
 - Side wall coring in all potential reservoirs
- Pressure and fluid samples
- Proof injectivity with injection test

Proved suitable properties for CO_2 injection and storage (9/6-1)

The well was drilled using the Deepsea Nordkapp drilling rig. (Photo: Odfjell Drilling)

6/2/2025 A wildcat well drilled by Harbour Energy Norge and licensees in the "Havstjerne" storage project confirmed a reservoir that is suitable for injection and storage of carbon dioxide (CO₂).


Well 9/6-1 was drilled in the North Sea around 30 kilometres southeast of the Yme platform and around 120 kilometres southwest of Farsund – the DeepSea Nordkapp rig was used in the drilling operation.

Well 9/6-1 is the first well drilled in <u>exploration licence (EXL 006)</u>, which was awarded in May 2023. This is the fourth well drilled to investigate potential commercial storage of CO_2 on the Norwegian continental shelf (NCS).

Creating a Legacy ... Well

- 9/6-1 Havstjerne has been permanently P&A'd in accordance with Norsok D-010
- Dedicated assessment to ensure P&A Design is fit for purpouse is required
- Restoring caprock integrity
 - Designed for future CO2 injection
 - Material selection and Barrier placement is key
 - Cement plug is the critical element to re-store caprock integrity

... but what's different in CCS?

Study Outline

SPE-227891-MS

Systems Tested:

- System A: Reduced Portland cement
- System B: System A + flexible additives
- System C: System B + latex

Key Findings:

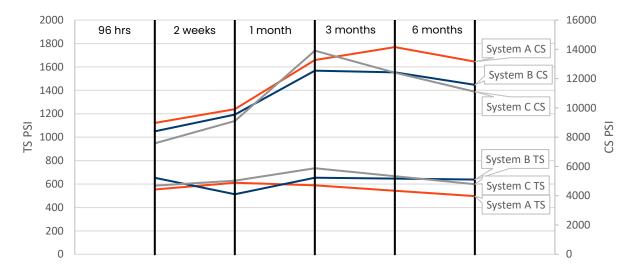
- All systems passed performance criteria
- Cyclic conditions were less aggressive than static ones

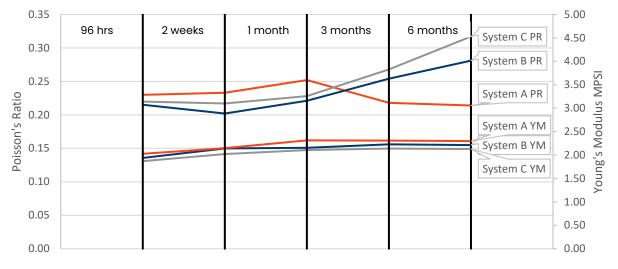
Parameter	Criteria	System A	System B	System C
Visual appearance	No flaking, cracks, and micro cracks (MC)	MC	MC	MC
Volume	No shrinkage	Pass	Pass	Pass
Permeability	Low (<0.1 mD)	Pass	Pass	Pass
Compressive Strength	>500 psi	Pass	Pass	Pass

Sample Preperation

- Designed at 1.9 SG with fresh water
- 31 samples for each system
- Cured for 96 hrs at 110 °C / 3000 psi in fresh water
- Aged in formation brine for 2 weeks
- Placed in curing chamber
 - Energized with CO₂ (pH ~5.0) in brine
- Subjected to both static & cyclic aging over 6 months
 - − Alternating 110 °C \leftrightarrow 29 °C, 4200 psi
 - 1 cycle every 2 weeks
- Samples extracted for testing at
 - 1-month re-energized CO₂
 - 3-months re-energized CO₂
 - 6-months

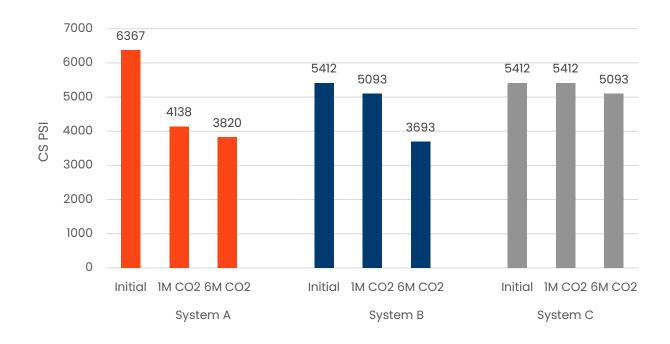
System A – After 2-week brine cure



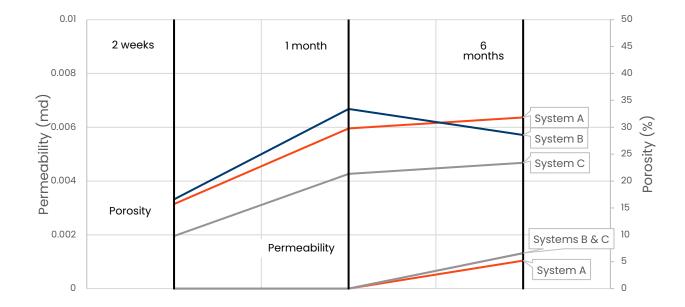

System A – After 6-months in carbonic acid

Mechanical Study

- Static Conditions:
 - Static conditions maximize reaction driving force advancing the carbonation front faster
 - Under static exposure expect lower CS than in cyclic testing at the same times
- Cyclic Conditions:
 - Early curing and exposure to CO₂ can enhance strength, but long-term exposure may lead to mechanical degradation.
- Material selection and additive use are critical to balance strength, flexibility, and durability.



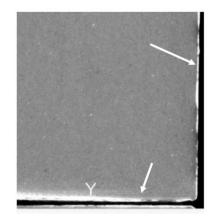
Mechanical Study

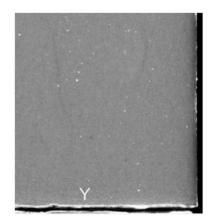

- Compressive Strength Confined (CS):
 - System A shows the strongest CS decline already by 1 month under static exposure
 - System C retains CS
- Outcome:
 - Static conditions maximize reaction driving force advancing the carbonation front faster
 - Under static exposure expect lower CS than in cyclic testing at the same times

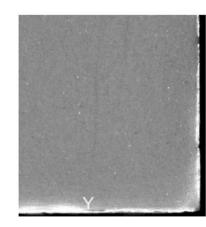
Mechanical Study

- Porosity:
 - All systems showed increased porosity after CO₂ exposure
 - Porosity stabilized after initial 1 month exposure
 - System C had lowest porosity overall
- Permeability N2:
 - Initial permeability < 0.0001 mD
 - Slight increase to ~0.0013 mD at 6 months

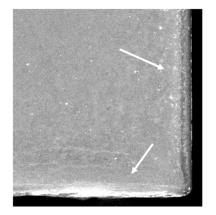
CT Imaging

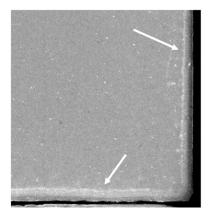


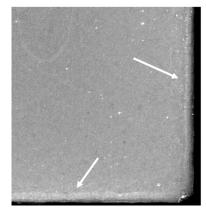

SPE-227891-MS


- Cyclic exposure (varying temperature/constant pressure):
 - Minimal visual degradation after 6 months
 - Surface and internal structure remained largely intact
 - Slower carbonation front progression
- Static exposure (constant temperature/pressure):
 - Clear visual signs of carbonation and degradation
 - More advanced reaction fronts, especially in System A
 - Greater material transformation and potential weakening

Outcome:


- Cyclic conditions are less aggressive, better simulating real well operations
- Static conditions represent a worst-case scenario, accelerating cement degradation
- All samples showed no loss of competence





Magnified comparison of the surface-near regio of System A (left), System B (middle) and System C (right) after 6 months cyclic CO_2 -aging. Arrows indicate the front of carbonation.

Magnified comparison of the surface-near regio of System A (left), System B (middle) and System C (right) after 6 months static CO₂-aging. Arrows indicate the front of carbonation.

