

ONS IOR Award, Norway

Improved Oil Recovery

The Importance of Technology

Gunnar Hviding
Chairman & CEO

Date: 28/08/2018

ABOUT RESMAN

- Established 2005
- Headquarters in Trondheim, Norway
- 76 employees
- Global footprint
- R&D savvy. 15% of revenue
- Organic chemical tracers with 10 year lifetime
- Determining where in the well the production is coming from (zonal resolution of production)

INDUSTRY CHALLENGE • REDUCE UNCERTAINTY

- How are my zones performing over time ?
- Where is water breakthrough occurring?
- Is the toe producing?
- What is optimal drawdown?
- When did water break through?
- How are zones developing over time ?

SOLUTION • RESMAN INTELLIGENT TRACER® TECHNOLOGY

- Production log without the risk and cost of well intervention
- Continuous monitoring

EXPANDING RESMAN MONITORING SERVICES TO OPERATOR MODELLING INTEGRATION

WORK FLOW: QUANTIFICATION vs. WELL MONITORING

Transient analysis
Zonal production
Ip and production over time

% x

Well clean-up verification Initial rates (oil/water)

Time

QUANTITATIVE

2

Continuous well monitoring (production phase)

Zonal performance/ trending Water breakthrough (event)
Optimal drawdown pressure
• QUALITATIVE Trend Analysis

3

Re-start (transient)

Time

Quantification after restart

• QUANTITATIVE

WE ARE A PIECE OF YOUR PUZZLE

Seismic
Logs
Core data
Well path
Reservoir model and simulation
Multiphase meter
Downhole gauges
PLTs

- Zonal contribution
- Location and time of water breakthrough
- Optimal drawdown
- Zonal performance trend data

THE MOST COST EFFECTIVE WAY TO GET THE DATA

RESMAN Inflow Tracers vs. PLT's

* Conversion Rate \$1 = 8 NOK £1 = 10 NOK

Zonal Inflow Contribution

CASE STUDY – QUANTIFICATION OF INFLOW (HORIZONTAL TWO-LATERAL WELL)

Zonal Inflow Contribution

USING QUANTITATIVE AND QUALITATIVE DATA TO ARRIVE AT DECISION

CONCLUSION: Lower sand is not economical

Zonal Resolution to Global Water Production Data

WATER BT AND INFLOW LOCATION – ZONAL RESOLUTION TO PRODUCTION DATA

CHALLENGE

 Detect the location of water breakthrough

SOLUTION

 Operator installed RES•H2O systems in four reservoir compartments

RESULTS

 Two independent water breakthrough events from one subsea well were detected:

zone 1 and zone 3

 Operator adjusted the reservoir models and improved the management of the field-wide water flood program

Operational Mode Analysis

OPERATIONAL DECISION-MAKING USING MULTI-RATE TESTING

Critical well and reservoir information acquired based on inflow tracer data

• Sandstone reservoir - Horizontal well - 2000 meters of screens sections

Conclusions:

- Short-term: Consequences of changing THP/BHP now known for the operation. Zone 1 and 2 requires highest drawdown
- Mid-term: Zone 5 as Water Shut-Off target
- Long-term: Targeted waterflooding. Water injector to sustain production from Zone 1 and 2
- Model Reservoir refinement

Conclusions

Zonal Production Heatmap

Zone	Drawdown Applied			
	Low		High	
	W	0	W	0
1				
2				
3				
4				
5				

Advanced EOR Surveillance

RESMAN TRACER TECHNOLOGY ENABLES DECISION-MAKING: ADVANCED EOR SURVEILLANCE

- Advanced EOR Surveillance for a variety of EOR methods to get quantitative zone-specific information
- EOR methods, e.g.
 - Macroscopic sweep: Foam, Gel, Polymer
 - Microscopic sweep: Surfactant, ASP, Low salinity
- 'Close-to-injector' Producer or Observation well to get 'fast response'
 - **STEP 1:** Zonal inflow before EOR treatment
 - **STEP 2:** Inject EOR chemical
 - STEP 3: Zonal inflow after EOR treatment
- Early indication of zone-specific EOR performance (e.g. reduced zonal water production)

RESMAN TRACER TECHNOLOGY ENABLES DECISION-MAKING: ADVANCED EOR SURVEILLANCE

Zone-specific EOR Surveillance information:

- Polymer has improved macroscopic sweep between injector and green zone
- Zone-specific EOR performance information.
- 3. Update of reservoir model with important detailed dynamic spatial information

IOR SUMMARY

WORKFLOW

SUMMARY: WORKFLOW

www.resman.no