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 Proof-of-concept study for predicting faults and horizons

 Real data needed to be involved

 Train using human interpretations from multiple fields

• Exploration and production areas

 Binary sample prediction and pixel-level prediction

(segmentation)

 2D and 3D training data

Goals

Background



Approach
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APPROACH

Training data work flow overview

Seismic data sample

Interpretations
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APPROACH

Neural network: Binary sample prediction
MaxPool

Dense (256)

x2

Note: Small version of the VGG architecture (Simonyan and Zisserman, 2014)
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Convolution

Convolution

Convolution

50x50x1

50x50x32

25x25x64

12x12x128
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APPROACH

Neural network: Pixel prediction (image segmentation)

Encoder Decoder

MaxPool Upsample

200x200 200x200

Copy and concatenate

Note: Small version of the SegNet architecture (Badrinarayanan et al., 2015)



Results
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RESULTS: FAULT PREDICTION

Seismic slice
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RESULTS: FAULT PREDICTION

Heat map binary prediction
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RESULTS: FAULT PREDICTION

Heat map pixel prediction
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RESULTS: HORIZON PREDICTION

Seismic slice
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RESULTS: HORIZON PREDICTION

Heat map pixel prediction
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RESULTS: HORIZON MULTI-FIELD TRAINING

Seismic
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RESULTS: HORIZON MULTI-FIELD TRAINING

Heat map: Trained on one dataset
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RESULTS: HORIZON MULTI-FIELD TRAINING

Heat map: Trained on another dataset



16

RESULTS: HORIZON MULTI-FIELD TRAINING

Heat map: Trained on two datasets



Discussion and conclusion
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Suggestions

 More data to train on

 Representative data of the geology

 Model adaption to the area to be used on

 Apply techniques for preventing over-fitting

DISCUSSION

 Differences in

• Geology

• Data quality

 Number of interpretations varies dependent on where the area is 

in the development phase

Areas are different
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Suggestions

 Use synthetic data

 Mix of synthetic and human-made data

 Manually QC-ed human-made data

 Use data from areas with enough interpretations

DISCUSSION

 Using human interpretations are not straight forward

 Many false negatives

 Very few false positives

 Non-symmetric label noise

Using human interpretations
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 New and better loss functions

 Take topology into account

 Post processing steps on the heat maps

 Out-of-the box neural networks with standard loss functions

struggle with finding straight lines

• Learning best on objects with some «extent»

 Standard metrics not ideal

Straight lines are difficult

Prediction

True value
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 Summary

• Image recognition by training models on human interpretations projected onto seismic samples

• Features predicted

- Faults

- Horizons

 Challenges

• Non-symmetric label noise (false negatives) due to incomplete interpretations (manual data quality check is time-

consuming)

• Prediction accuracy suffers when applying a model to a different field

• Standard image recognition is not well suited for detecting lines and planes

• A reference data set for benchmarking these kinds of models is badly needed

 Future work

• Transfer learning using pre-trained weights

• 3D data augmentation (transformations on real data or artificial data)

• Better metrics for FCNN

• Train on large combined datasets from multiple fields

• Pre-stack seismic data

Conclusion
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