Geomechanical modelling of fault reactivation related to pore pressure changes.

Elin Skurtveit, Fabrice Cuisiat, Hans Petter Jostad, Lars Andresen

FORCE HPHT workshop 10.Nov.2010

Focus of the talk

- HPHT reservoirs and depletion
- Geomechanical modelling related to depletion
- Laboratory testing of hydro-mechancial parameters
- Case studies: Kristin and Statfjord Field

HPHT reservoirs and depletion

 $\Delta \epsilon = (\Delta \sigma - \Delta p)/K + \Delta p/K_s$

Effect of depletion on fault in reservoirs

- Flow and pressure barriers
- Affect horizontal and vertical flow paths
- Pressure compartments and large differential pressure across faults
- Stress concentration

Geomechanical modelling of pressure depletion at NGI

Fault integrity Well integrity

Special laboratory testing on intact and faulted material

Geomechanical modelling

- Geometry
- Stresses
- Depletion
- Geomechanical properties
 - Stiffness
 - Strength
 - Permeability

How to model fault zones

- Geometry
- Complexity
- Fault core type of material
- Damage zone

Laboratory tests Standard Triaxial testing

Parameters

- Strength
- Deformation
- Permeability
- Seismic velocities
- Resistivity

Test conditions

- Confining Pressure up to 100 MPa
- Pore Pressure up to 80 MPa
- Temperatures up to 160°C

Challenges related to testing

- Relevant material
- Fresh and undisturbed material
- Fault zone material bad quality or missing

Ring shear test equipment

Investigating basic mechanisms involved in faulting

Clausen & Gabrielsen, 2002

Parameters tested:

Shearing of pure sand, sand mixed with clay and clay layers producing clay smear Varying porosity, burial depth, clay content, number of clay layers

Ring shear tests

Effect of various burial depth during shearing

3 clay layers separated by sand

Loading the sample to required burial depth

Faulting simulated by rotating lower part of ring cell

Flow measurements

Observation of shear zone

- clay smear
- grain rolling
- cataclasis

Clay smear

Sand shear

Field cases

Kristin Field – HPHT reservoir Statfjord Field – Statfjord Late Life

Kristin Field - Halten bank

Geomechanical modeling of depletion:

- Reservoir deformation due increased effective stress
- Total stress reduction in horizontal direction, develop shear deformation
- Stress concentration around internal faults

Special laboratory tests

Material properties for calculation of compaction and deformation during depletion

Compressibility of the reservoir depends on the initial porosity and possibly quarts cementation

Fault integrity during depressurization of the Statfjord Field

Poroelastic model to account for grains compressibility during depletion

Use existing observations from Brent-Statfjord as verification/calibration

Fault properties

- Throw from seismic sections
- Empirical relationship between fault throw and thickness from field analogue
- Shale Gauge Ratio to define the clay content of the fault
- Uncertainty in thickness and damage zone investigated in parametric study

Mechanical properties of fault material

Controlled by clay content from SGR analysis

- Clay rich fault rock assumed same properties as intact shale
- Sealing fault rock with less clay assumed same properties as sandstone or even stronger/stiffer (cataclasites)

lower bound

Max. shear stress in Horst structure

Sources of uncertainties – parameter study

- stiffness properties (reservoir, shale layers and overburden)
- fault geometry (inclination, thickness, drag and juxtaposition);
- pressure distribution and drainage of fault core zone.

Effect of fault core thickness

Highest shear stress mobilisation in sand:sand juxtaposition at the bottom of the depleted reservoir.

Maximum shear stress τ_{max} in fault not significantly affected by reduced fault zone

Effect of damage zone

'damage zone' modelled as stiffer material small positive effect

Results from parametric study

- Maximum shear stress in fault core zone is relatively insensitive to variations in geometry and stiffness parameters
- positive effect of drag
- largest uncertainty related to the fault peak shear strength

Conclusions

- Geomechanical modeling tools for fault integrity during depletion and methods for assessing material properties has been presented
- 2D models have been used but 3D is needed for more complex geometries
- Largest uncertainty related to the fault (core) peak shear strength
- Further work:
 - Effect of shear mobilization on hydraulic communication
 - Determination of fault strength

Thanks!

F. Cuisiat, E. Skurtveit. (2010) An experimental investigation of the development and permeability of clay smears along faults in uncemented sediments". Journal of Structural Geology, In press. 2010

Fabrice Cuisiat, Hans Petter Jostad; Lars Andresen; Elin Skurtveit; Eiliv Skomedal; Marc Hettema; Kellfrid Lyslo. (2010) Geomechanical integrity of sealing faults during depressurisation of the Statfjord field". Journal of Structural Geology. In press. 2010

Skomedal, E.; Jostad, H.P.; Hettema, M.H. (2002) Effect of pore pressure and stress path on rock mechanical properties for HPHT application. SPE/ISRM Rock Mechanics Conference. Irving, Texas 2002. CD-rom. Paper SPE 78152. 10p.