Uni Research

Centre for Integrated Petroleum Research (CIPR) Geoscience

Joining Forces Seminar February 2-3, 2016

Nicole Richter

Anita Torabi

Jan Tveranger

Simon Buckley

Eivind Bastesen

Tobias Kurz

Key Competencies

-Reservoir characterization

- -Fault and fracture characterization and geomechanics
- -Depositional systems/sedimentology
- -Seismic interpretation and attribute analysis

-Geo-modelling

-Complex reservoirs -Method development

-Virtual outcrop geology

- -Acquisition and processing
- -Database development
- -Software development
- -Hyperpectral imaging

Focus

• Petroleum E&P, but also activities in CO₂ sequestration and green energy

<u>CO₂ STORAGE</u>

GeoS Geothermal Energy Solutions

Scientific leader of the SUCCESS-FME research in the Bergen Region

ATHENA CCUS Centre: Advancing integrated research to enable CCUS in Norway

Host. Application submitted to NRC

Partner. Application submitted to NRC

GEOTHERMAL ENERGY

ELERRA European Energy Research Alliance

Associate

OFFSHORE WIND

Strengths

- Cross-disciplinary research environment
- Emphasis on applied research
- Outcrop analogues
- Staff with academic and industrial background
- Extensive network of collaborating institutes, Universities and individual researchers

Petroleum related research

Examples of ongoing projects

- SAFARI 3
- Fault geometric and seismic attributes
- Seismic expression of fault and fracture zones
- CO₂ seal bypass (COPASS)

Topical research

- Hyperspectral imaging
 - Infrared imaging of cores and outcrops
- Paleokarst reservoirs
 - Forecasting paleokarst architecture, seismic characteristics and fluid flow
- Virtual outcrop modeling
 - Lidar, photogrammetry, UAVs for 3D modelling
 - LIME software for interpretation and field data integration
 - Virtual field trips, synthetic seismic, mobile devices
- Fault facies
- Geothermal reservoirs

SAFARI Phase 3 is sponsored by the Norwegian Research Council and

CIPR-GEO

Anita Torabi

Fault geometric and seismic attributes

- Improve existing methods for fault identification and characterization in seismic volumes.
- Provide new techniques for enhanced imaging of fault geometries
- Fault seismic attribute volumes are used to extract fault geometric attributes (Length, displacement, height) and develop new statistical models for fault scaling relations (Focus area: Barents Sea),

- •Investigate the feasibility of creating new seismic attributes to capture fault geometry.
- •Develop new algorithms for improving imaging of discontinuities in seismic data.
- •Scaling of faults for the purpose of modelling and prediction of fault seal integrity.

Jan Tveranger

CO₂ seal bypass (COPASS)

- Reservoir modelling and simulation of exhumed paleoreservoirs, Utah
- Integration of structural and stratigraphic field observations, spatial patterns of diagenesis and geomechanical properties
- Provide a fundamental, conceptual understanding of CO₂ plumbing systems, covering aspects such as
 - temporal impact of CO₂ plumes on flow
 - Capability of models to reproduce observations
 - Impact of selected parameters on reservoir quality, integrity and responses

Seismic expression of faults and fracture zones

- Seismic forward modelling of fault zone models based on empirical data
- Investigate link between fault zone properties and seismic response

CIPR-GEO

Topical research

http://uni.no/en/uni-cipr/geosciences/hyperspectral-imaging/

Hyperspectral Imaging - cores

- Infrared imaging of cores
- Map and ID core material, clay content and carbonate phases
- Automatic mapping, recognition and quantification at mm resolution

Portable rig

3 bands visualised in RGB,

Classification

Variability map

End-members

pyrite sandstone nontronite, chlorite

pyrite sandstone

zeolithe sandstone

clorite, nontronite

sandstone

sandstone

http://uni.no/en/uni-cipr/geosciences/hyperspectral-imaging/

Tobias Kurz Simon Buckley

Hyperspectral Imaging - Outcrops

Terestrial Lidar Scaning integrated with Ground-Based Hyperspectral Imaging

See Poster

sandstone, 366.8 m²
siltstone, 273.3 m²
carbonate nodule, 117.9 m²
gypsum, 5.5 m²
desert varnish, 53.0 m²
not classified, 627.5 m²
masked pixels

http://uni.no/en/news/2016/1/21/oil-old-caves-new-challenges-scientists/

Jan Tveranger

Forecasting paleokarst architecture, seismic characteristics and fluid flow

Virtual outcrop modelling

- Lidar, photogrammetry, UAVs for 3D modelling
- LIME software for interpretation and field data integration
- Virtual field trips, synthetic seismic, mobile devices

Jan Tveranger

Fault Facies

- Explicit modelling of fault zone architecture and properties
- Adapted for standard reservoir modelling tools
- Full-field implementation and impact on reservoir behaviour recently tested

(Qu et al. in press)

Fachri et al. *in press*

Open FTM model

Conduit SZ VF model

1 km

Membrane FTM model

Membrane S7 VE model

Eivind Bastesen

LabFrac

- Planned well park (10-15 wells) in fractured bedrock 100x 100 m at depths down to a few hundred meters
- Eliminate effects of matrix porosity
- Study fluid flow in fractured rock
- Controlled testing of forecastingability of of geo and flow simulation models
- Provide empirical data on simulation-cell scale to test and improve up-scaling methods for fractured rock

Key Competencies

-Reservoir characterization

- -Fault and fracture characterization and geomechanics
- -Depositional systems/sedimentology
- -Seismic interpretation and attribute analysis

-Geo-modelling

-Complex reservoirs -Method development

UNI Research CIPR-GEO

-Virtual outcrop geology

- -Acquisition and processing
- -Database development
- -Software development
- -Hyperpectral imaging

