Center for Energy Resources Engineering CERE

Enzymes: Mechanisms of action and related problems

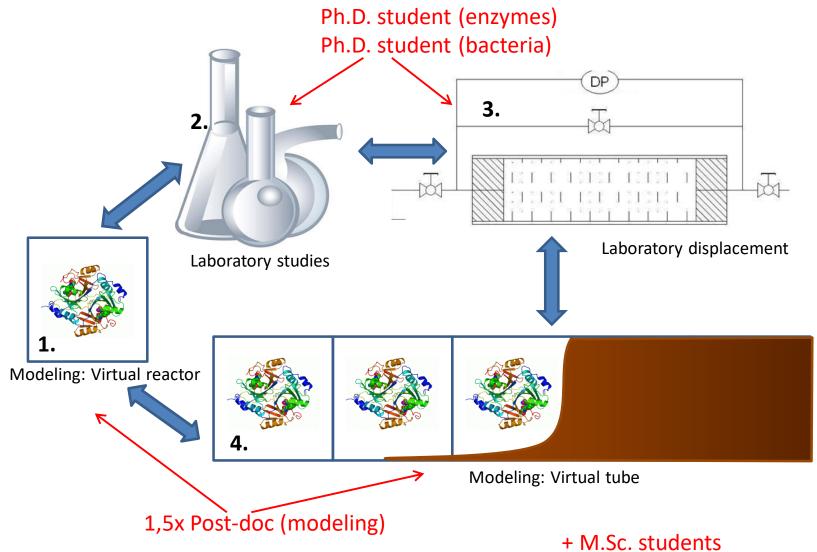
A. Khusainova, S.M. Nielsen, H.Høst Pedersen, J.M. Woodley, A. Lunde, B. Haastrup, <u>A. Shapiro</u>

DTU Chemical Engineering Department of Chemical and Biochemical Engineering Technical University of Denmark



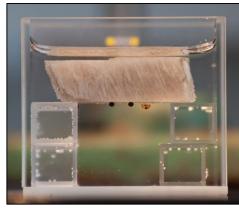
Overview of BioRec

General


- Duration: 2010 2015
- Industrial collaborators: Mærsk, DONG, NovoZymes,
- Academic collaborators: DTI, RUC, DTU
- Objective:
 - To develop biotechnological knowledge and technology that will increase the amount of recoverable oil in Danish oil fields in the North Sea
 - (WP1) To investigate possible recovery mechanisms for Bio-EOR (enzymes and microorganisms) in the Danish North Sea sector.
- Budget 33 000 000 DKr

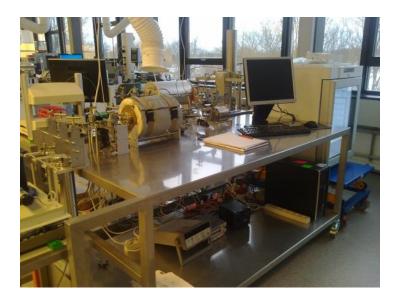
Organization of the project (WP1)

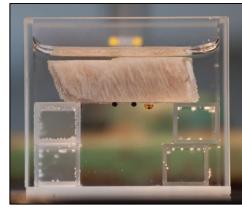



Modeling: Virtual tube

Organization of the project (WP1)

Experimental

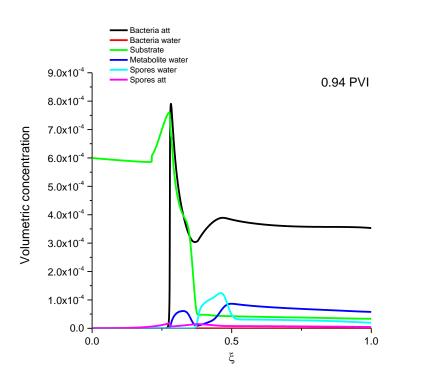




Wettability

- Mineral surfaces
- Enzyme solutions
- Contact angles/adhesion
- Adsorption (statics and dynamics)
 - Mineral powder/surfaces
 - Desorption times
- Enzyme/bacteria penetration
 - Penetration depths
 - Spore-forming vs non-spore forming
 - Retention of enzymes
- Bacteria growth and sporulation
 - Optimal nutrition
 - Effects of acidity, temperature...
- Flooding
 - Homogeneous vs heterogeneous rock
 - Secondary vs tertiary injection

Enzymes: Experimental



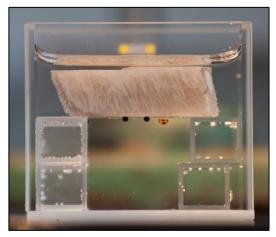
- Wettability

- Mineral surfaces
- Enzyme solutions
- Contact angles/adhesion
- Adsorption (statics and dynamics)
 - Surfaces: mineral powder
 - Desorption times
- Enzyme/bacteria penetration
 - Penetration depths
 - Spore-forming vs non-spore forming
 - Retention of enzymes
- Bacteria growth and sporulation
 - Optimal nutrition
 - Effects of acidity, temperature...
- Flooding
 - Homogeneous vs heterogeneous rock
 - Secondary vs tertiary injection

Modeling (to be presented by Sidsel)

- Microbial EOR (not enzymes)
- 1D model (but with the 3D perspective)
- Different mechanisms
 - Filtration vs adsorption
 - Sporulation
 - Surfactant production
 - Plugging
 - ...
- Daily interaction with the laboratory

Important effects for EnzEOR

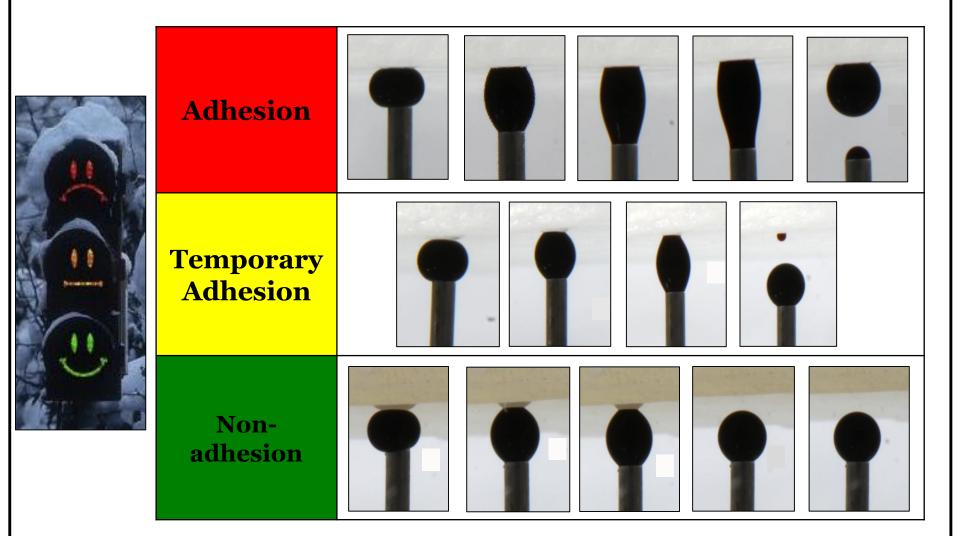

Previous studies

- Enzymes help producing more oil
- The main mechanism is supposed to be changing wettability (e.g. H. Nasiri, 2011)
- What are the main mechanisms of enzyme behavior/action?
 - Interfacial tension
 - Adhesion
 - Transport
 - Attachment

Wettability tests

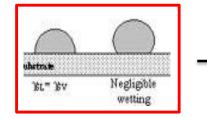
Experiments by A. Khusainova

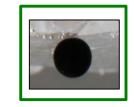
- Room \mathbf{T} and \mathbf{p}
- Brine synthetic North Sea water
- **15 enzyme** products: **NOVOZYMES**
- 2 Commercial Mixtures


"Sandstone" Oil

Quartz ≈Sandstone & Mica ≈ Clay

Adhesion Behavior Test: Terms


Adhesion Map


	1% (wt/wt) of product				0.5%(wt/wt) of product			0.1 %(wt/wt) of product				
	Grey	Yellow	White	Freshly	Grey	Yellow	White	Freshly	Grey	Yellow	White 1	Freshly
	Calcite	Calcite	Calcite	Cleaved	Calcite	Calcite	Calcite	Cleaved	Calcite	Calcite	Calcite	Cleaved
				Calcite				Calcite				Calcite
Lipases/Esterases												
NS 44124												
NS 44129												
NS 81249												
NS 44034												
NS 44033					N/A				N/A			
NS 44164 NS 44035	NI/A				NI/A				N/A			
	N/A				N/A				N/A			
Carbohydrases												
NS 81251												
NS 81252												
Proteases												
NS 81253												
NS 44110												
NS 44055				N/A	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R
NS 44053				N/A								
Oxidoreductases												
NS 81254				N/A	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R
NS 44071				N/A	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R
Commercial												
Products												
EOR-Zymax												
Apollo-Greenzyme												

Contact Angles

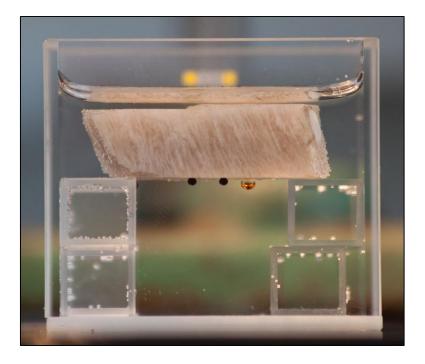
Calcite in SW $\Theta = 38 \pm 7^{\circ}$

Lipases/Esterases	0° (100 % reduction)			
Carbohydrases	No significant changes			
Proteases	Mixed Result			
Oxidoreductases	No significant changes			
EOR-Zymax	No significant changes			
Apollo-Greenzyme	25 % decrease			

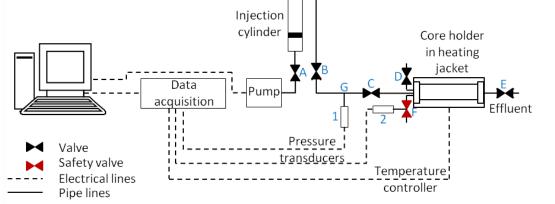
Enzyme vs surfactant

Surfactant (Sodium dodecyl sulfate)

Enzyme (*lipase*)


- Enzyme acts on the solid interface, while surfactant affects oil-water surface tension
- Adsorption of enzyme on solid is necessary mechanism (unlike surfactant)
- Although enzyme only slightly affects the surface tension, it may promote emulsification

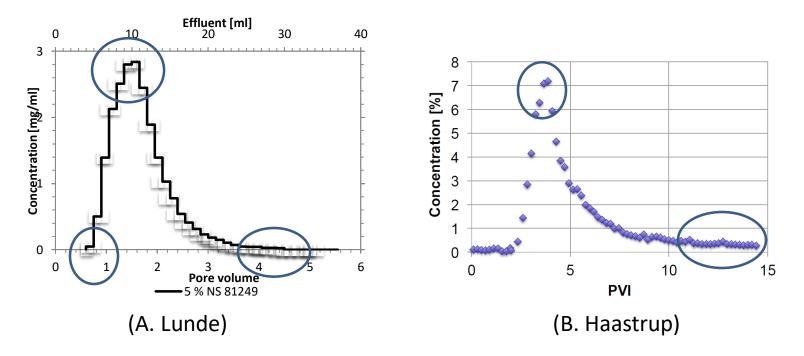
Stable emulsions with submicrometer drop sizes may be formed


Dynamic desorption tests

- A mineral soaked for 30 min in an enzyme or enzyme product seawater solution
- Removed and put into SW
- The oil drops put in contact after 0, 30min, 60min,...,48 days
- Adhesion behavior monitored

Penetration tests

- Outcrop chalk core saturated by seawater
- Injection of 1 PV enzyme/enzyme product solution
- Injection of several PV of seawater
- Measuring of enzyme in the effluent (Bradford assay)


Penetration vs desorption: summary of the results

		Adhesi	Penetration			
		Quartz		Calcite	Sandstone	Chalk
	State	Time	State	Time		
BSA 1%		1. 0- 40 min 2. 45-70 min 3. 75 min +		During 42 days n/a-t/a	Anette: Penetrate, Overall recovery of BSA – 82-87%	Alsu: No penetration of BSA
BSA 0.5%		N/A	-	T/a-a was first 122 min, after 132 min – only a	N/A	N/A
NS81249-Prod		48 days		1. 0-30 min 2. 45-145 min 3. 155 min +	N/A	Birgit: Penetrate, Overall recovery 35%
NS81249-Purified		1. 0-83 min 2. 92-200 min		N/A	Anette: Penetrate, overall recovery– 87%	Alsu: <mark>Penetrate</mark> in principal
NS44164-Prod		39 days		1. 0-20 min 2. 25-90 min 3. 100 min+	N/A	Birgit: No penetration
NS44164-Purified		1. 0-202 min 2. 215-276 min		N/A	N/A	N/A
Who has done		An	Alsu/Anette/Birgit			

Penetration vs desorption tests

- Similar results for the BSA protein (no penetration = no desorption)
- Different results for enzyme products
 - Sometimes the results of the two tests are correlated, sometimes they are not;
 - Sandstone: no desorption, but the enzyme penetrates;
 - Chalk: reasonably fast desorption (ca. 100 minutes) but no penetration
- Behavior of pure enzymes is still to be studied

"Anomalous diffusion"?

- Sometimes enzyme arrives to the outlet earlier than after 1 pvi (in sandstone)
- Highly asymmetric production profiles (unlike those predicted by the diffusion/dispersion models)
- Long "production tails"

Conclusions

- The main mechanism of enzymatic action is adsorption on the solid-liquid interface
- Lipases/esterases seem to be the most perspective group of enzymes
- Adsorption may be irreversible, or desorption may be very slow. This creates a challenge of enzyme loss inside the rock
- Penetration tests show that enzymes are sometimes "lost" inside the rock
- Production data show the signs of anomalous transport behavior (anomalous diffusion) of the enzymes