









## MEOR: From an Experiment to a Model

<u>Sidsel Marie Nielsen</u>, Amalia Halim, Igor Nesterov, Anna Eliasson Lantz, Alexander Shapiro

Stavanger, 18 Nov 2014

RECOVERY MECHANISMS

Technical University of Denmark

Reduction of oil-water interfacial tension (IFT) by surfactant production and bacteria.

Fluid diversion by microbial plugging.

Reduction of oil viscosity.

Gas production.





## EXPERIMENTS

North Sea Reservoirs are mainly chalk reservoirs



Scanning Electron Microscope of Cretaceous, Maastrictian M1b1 unit reservoir chalk (Maersk Oil, 2014)

Chalk rock: Small pore throats, comparable to microbe sizes

Stevns Klint outcrop: Model study, pore throat size: 0.004-6.1µm

Bacterial sizes: 0.5x3µm

Center for Energy Resources Engineering

CERE



# SPORE PROPERTIES

Model bacteria used in penetration test: *Bacillus licheniformis* 421 (spore-forming) *Pseudomonas putida* K12



http://bio1151.nicerweb.com/Locked/media/ch27/endospore.html

### Vegetative cell

Growing with metabolism.

### Spore

Sporulation induced by stress.

Dormant (non-growing).

Smaller size.

Different surface properties. Reactivation.

## Methods

### Schematic Core Flooding Set-up





## Spore-forming vs non-spore-forming

#### Bacteria penetration study/One phase liquid core flooding:

Halim et. al., Transp. Porous Med. (2014) 101, 1–15. doi:10.1007/s11242-013-0227-x



- More cells were found in the effluents of core flooding with B. licheniformis 421 as compared to P. putida K12
- Survival/motion of bacteria can be mainly due to spores.

DTU

## Penetrated bacteria 🗮

#### Bacteria penetration study/One phase liquid core flooding: Halim *et. al.*, Transp. Porous Med. (2014) 101, 1–15. doi:10.1007/s11242-013-0227-x



*B. licheniformis* 421 cells under DAPI staining (a) in growth media, before injection into a chalk core plug, cell size 0.5 x 3μm (b) in the effluent from a chalk core plug, spore formation CERE



Flooding sequences 🗮

### "Tertiary recovery"

- Injection of SS (2-3 PVI) 1.
- Injection of crude oil until S<sub>wi</sub> 2.
- Injection of SS until S<sub>or</sub> (1<sup>st</sup> SS) 3.
- Injection of bacteria (1-3PV) 4.
- Incubation (3 days) 5.
- Injection of SS (2<sup>nd</sup> SS) 6.

**Fertiary** 

### "Secondary recovery"

- Injection of SS (2-3 PVI) 1. 2. Injection of crude oil until S<sub>wi</sub> 3. Injection of 1PV SS (1<sup>st</sup> SS) Secondary 4. Injection of bacteria (1PV) 5. Incubation (3 days) Injection of SS until S<sub>or</sub> (2<sup>nd</sup> SS) 6. Injection of nutrient (1PV) 7. 8. Incubation (7 days)
- 9. Injection of SS (3<sup>rd</sup> SS)

# Core plug properties

|          | k      | k     | $\phi$ | $\phi$ |
|----------|--------|-------|--------|--------|
|          | before | after | before | after  |
| Core ID  | (mD)   | (mD)  | (%)    | (%)    |
| 26_water | 3.2    | 2.8   | 30.8   | 30.7   |
| 26_3rd m | 3.2    | 3.1   | 31.1   | 30.7   |
| 26_2nd m | 3.1    | 3.2   | 30.7   | 30.8   |

- Core 26 homogenous reservoir chalk core
- No significant change in k and  $\phi$  before and after experiment
- No fractures based on CT scan results before and after experiments



0.55

Results 🗮

## Do bacteria produce more oil?



| Core no       | S <sub>or</sub> (% OOIP) |                |   |
|---------------|--------------------------|----------------|---|
| 26_water      | 45.2                     |                |   |
| 26_3rd method | 44.2                     |                |   |
|               |                          |                | - |
| Samples       |                          | Viscosity (cP) |   |
| Crude oil     |                          | 4.96           |   |
| SS            |                          | 0.55           |   |

SS+molasses+bacteria

Tertiary oil recovery method with production stopped at 11.5 PVI.

1 PV bacteria injected and incubated.

Additional oil: 2.3 % OOIP.

# Results 🗮

### Secondary vs tertiary recovery?



Secondary oil recovery method produces 3.3 % OOIP compared to tertiary method. 1 PV bacteria injected 1 PV after break-through.



## SIMULATIONS

## SIMULATOR OVERVIEW

#### 1D MEOR SIMULATOR

- Generic model.
- Growth and other reactions.
- Bacterial surfactant reducing IFT.
- Bacteria attachment due to filtration or equilibrium adsorption.
- Plugging
- Application of sporeforming bacteria.



## 1D MEOR MODEL 🗮



$$\frac{\partial}{\partial t} \left( \phi \sum_{j=1}^{n_p} \omega_{ij} \rho_j s_j \right) + \frac{\partial}{\partial x} \left( v \sum_{j=1}^{n_p} \omega_{ij} \rho_j f_j \right) = \phi q_i$$
$$i = \{o, w, b, s, m\}, \ j = \{o, w\}$$

## DTU

## SOURCE TERMS

#### Attachment

Irreversible deep bed filtration.

$$r_{att} = \lambda_0 v \omega_{bw}$$

$$r_{att} = \lambda_{sp} v \omega_{spw}$$

 $\lambda_{sp} = 0.1 \lambda_0$ 

Pore size vs. bacteria size.

### Reaction

Bacteria, surfactant and substrate.

$$r_{b} = Y_{sb} \,\omega_{bw} \left( r_{max} \cdot \frac{(\omega_{s} \rho_{w})}{K_{s} + (\omega_{s} \rho_{w})} \right)$$

#### **Sporulation**

$$a_b$$
 bacteria  $\overrightarrow{a_{sp}}$  spore  $+a_s$  substrate

$$r_{ij} = K_{bs}(\omega_s) \cdot a_x \, \omega_{xy}$$

## SPORULATION

### Sporulation

- Sigmoid-shaped curve for stress response in bio-systems
- Conversion releases substrate.

#### Reactivation

 Triggered by good conditions for survival





### **Oil mobilization**

- Surfactant production
- **IFT** reduction
- **Residual oil saturation**
- **Relative permeability**
- Fractional flow

#### **Option: Porosity reduction**

- Attachment
- **Microbial growth**
- Porosity reduction
- Water relative permeability
- **Fractional flow**

Two oil banks appear.

Constant rate.

Continuous.

Injection

PROFILE CHARACTERISTICS







Slug injection scheme selected to avoid clogging and to concentrate attached bacteria in specific zones in the reservoir.

## RELEASING PROCESS



Center for Energy Resources Engineering

Water slug induces conversion of attached bacteria to spores.

Rate of conversion is determined by released substrate and thus bacteria concentration.



## **REDUCTION OF CONVERSION RATE**



# SUBSTRATE AND SLUGS



#### HIGH SUBSTRATE INJEC-TION CONCENTRATION

Technical University of Denmark

Faster MEOR response

Spore injection and spore-forming bacteria injection are similar

Waterflooding curve corresponds to 1e-3 curve.

**CERE** Center for Energy Resources Engineering

## **SPORE-FORMING BACTERIA**



Center for Energy Resources Engineering

#### SLUGS

- Reduced clogging risk
- Larger surfactant production
- Improved utilization of substrate
- Prolonged oil mobilization

## **SLUG INJECTION SCHEMES**



# DTU

## CONCLUSION

- Spore-forming bacteria penetrate tight chalk better and may be used for MEOR.
- Experimental discoveries lead to new MEOR features to investigate numerically:
  - Filtration type behavior (no biofilms)
  - Spore formation
  - Selective plugging

# DTU

## CONCLUSION

- Numerical simulations show that spore-forming bacteria have the potential to avoid clogging due to sporulation.
- High substrate injection concentration gives fast MEOR response.
- Prolonged oil mobilization with water slugs due to substrate release from sporulation of attached bacteria.
- It is possible to optimize the recovery by selecting right slug sizes and sequences
- It is possible to deliver spores to a certain point at the reservoir and make them plugging there.
- The first slug is the most important for final recovery.



## Thank you for your attention.

# **QUESTIONS?**



## Methods

## Core Flooding Experimental Flow Chart



Methods

Secondary

#### Different studies:

- 1. Injection of SS (2-3 PVI)
- 2. Injection of crude oil until  $S_{wi}$
- 3. Injection of SS until S<sub>or</sub> (1<sup>st</sup> SS)
- 4. Injection of bacteria (1-3PV)
- 5. Incubation (3 days)
- 6. Injection of SS (2<sup>nd</sup> SS)

Tertiary

- 1. Injection of SS (2-3 PVI)
- 2. Injection of crude oil until  $S_{wi}$
- 3. Injection of 1PV SS (1<sup>st</sup> SS)
- 4. Injection of bacteria (1PV)
- 5. Incubation (3 days)
- 6. Injection of SS until S<sub>or</sub> (2<sup>nd</sup> SS)
- 7. Injection of nutrient (1PV)
- 8. Incubation (7 days)
- 9. Injection of SS (3<sup>rd</sup> SS)
- 1. Injection of SS (2-3 PVI)
- 2. Injection of crude oil until  $S_{wi}$
- 3. Aging 3 weeks
- 4. Injection of crude oil (2-3 PVI)
- 5. Injection of SS until S<sub>or</sub> (1<sup>st</sup> SS)
- 6. Injection of bacteria (1-3PV)
- 7. Incubation (3 days)
- 8. Injection of SS (2<sup>nd</sup> SS)

Wettabillity



#### Oil Measurement (Evdokimov et. al., 2002)



33



- The UV/visible spectroscopy method relies on absorptivities of solid asphaltene aggregation in toluene solution.
- Fig. a shows good linear regression of the NO concentration vs. the absorbance data. The replicate samples showed similar linear regression trend line which means this method is quite stable and reproducible.
- This method can detect oil as low as 1 μl (Fig. b).



#### Core Plugs Properties

|          | k before | k after | φ      | φ     |
|----------|----------|---------|--------|-------|
|          | (mD)     | (mD)    | Before | after |
| Core ID  |          |         | (%)    | (%)   |
| 26_water | 3.2      | 2.8     | 30.8   | 30.7  |
| 26_3rd m | 3.2      | 3.1     | 31.1   | 30.7  |
| 26_2nd m | 3.1      | 3.2     | 30.7   | 30.8  |
| 26_aging | 2.8      | 3.1     | 30.7   | 30.6  |

- Core 26 homogenous reservoir chalk core
- No significant change in k and  $\varphi\,$  before and after experiment
- No fractures based on CT scan results before and after experiment



### Wettability alteration?



Experiment with an aged core gave 3.6% incremental oil, very slightly higher than non-aged core

## NUMERICAL SOLUTION



Tanks-in-series approach Multivariable Newton iteration Sequential procedure