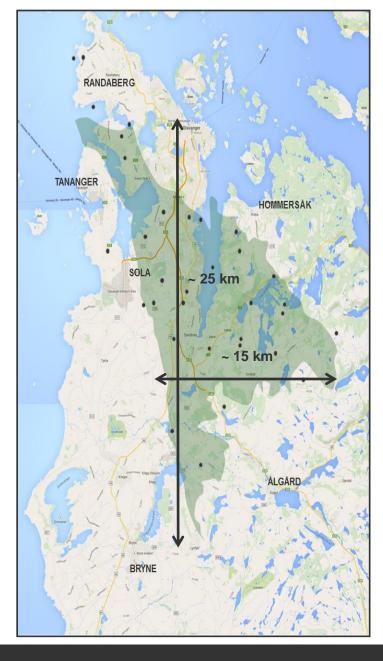

Johan Sverdrup – Polymer

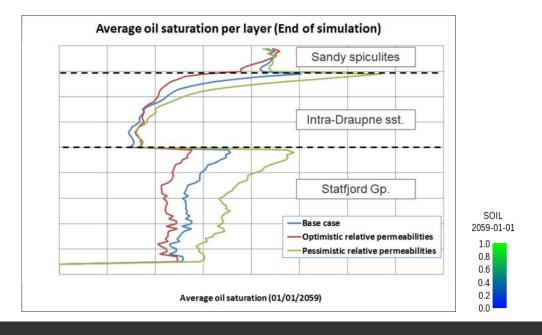
Force Seminar, Stavanger April 5th, 2016

Outline

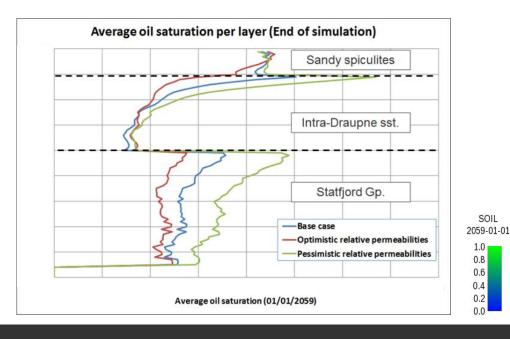
- Introduction to Johan Sverdrup
 - Reservoir data and IOR potential
 - Requirement for polymer pilot (White Paper Phase 1 approval)
- Polymer flooding
 - Mechanism and potential
 - Risks involved
 - Laboratory work
- Polymer pilot
 - Test parameters
 - $_{\circ}~$ Test design and timing
- Concluding remarks

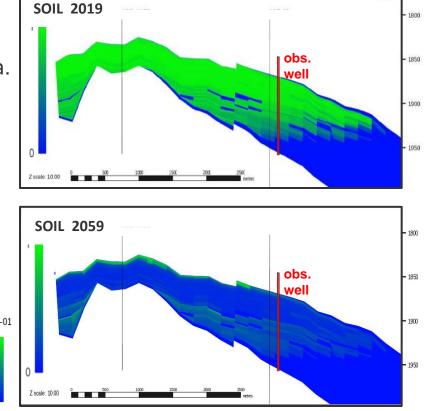


Reservoir data


GENERAL		
Reservoir apex	~ 1800 m TVD MSL	
Water depth	~ 110 meter	
FWL	1922 - 1934 mTVD MSL	
Area	~ 200 km²	
Pressure	Hydrostatic (ongoing depletion)	
Max dip	~ 2 degrees	
Age	Jurassic and Late Triassic (main reservoir)	
Recoverable resources	1.7 – 3.0 billion boe (full field)	
RESERVOIR AND FLUID		
Reservoir quality	 Excellent reservoir properties Multi-Darcy permeability Porosity ~ 25 - 30% 	
Reservoir thickness	Varying, 4-146 m (well observations)	
Reservoir fluid	 Highly under-saturated oil, low GOR Viscosity ~ 2 cP Density ~ 800 kg/Rm3 No initial gas cap 	

IOR Potential


- ► Remaining oil in 2059 after water flooding shows a potential for IOR
- Expected high recovery factors, but still large volumes of oil may be trapped in attics and un-swept areas
- Relative permeability and Pc are key uncertainties
 - $_{\odot}$ Observation well planned in the central area

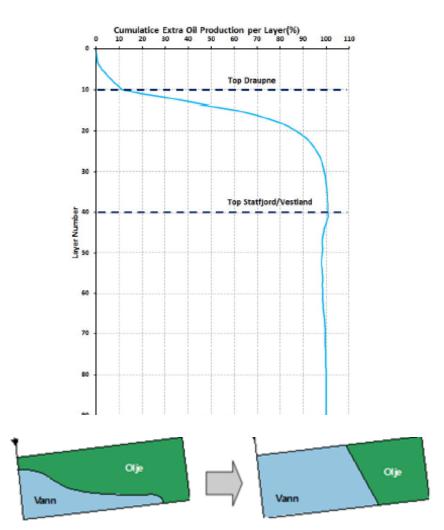


IOR Potential

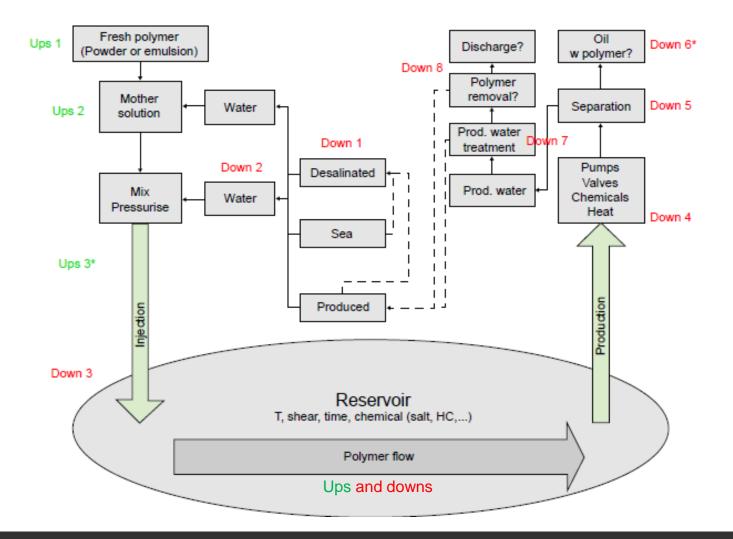
- ► Remaining oil in 2059 after water flooding shows a potential for IOR
- Expected high recovery factors, but large volumes of oil may be trapped in attics and un-swept areas.
- ► Kr and Pc are key uncertainties
 - Observation well planned in the central area.

PDO Requirement Phase 1 Johan Sverdrup

- A pilot project with polymer injection to be performed within 2 years after production start of Phase 1.
- The Pilot project shall be performed with minimum one injector and one producer.
- ► A decision basis to be presented to OED within 31.12.2017.
- ► An evaluation on further implementation within 1.7.2023.



Polymer flooding


Mechanism and Potential

- Mobility control
 - Oil viscosity ~ 2 cp
 - Water viscosity o.4 cp
 - If early implementation; acceleration effect
- Increased sweep
 - $\circ~\mbox{Targeting}$ attic oil
 - Kr and Pc important for potential
- Moderate delta oil potential
 - Competition with infill/WAG (?)

Risk issues – Value chain

Laboratory work – provide polymer specific assumptions to business case

Ranking of suitable polymers

- $_{\odot}$ $\,$ Viscosifying ability (Logistics and OPEX) $\,$
- Sustain high temperature 83 degrees C and high salinity
- Modest adsorption and shear degradation
- Perform core-flood (JS core and fluid)
 - Lowsal/Seawater + polymer
- Influence on oil-and water processing facilities due to production of polymer
- Impact of chokes on mechanical degradation

- Adsorption
- IPV
- RRF
- Mixing water
- Risking
- Add. cost

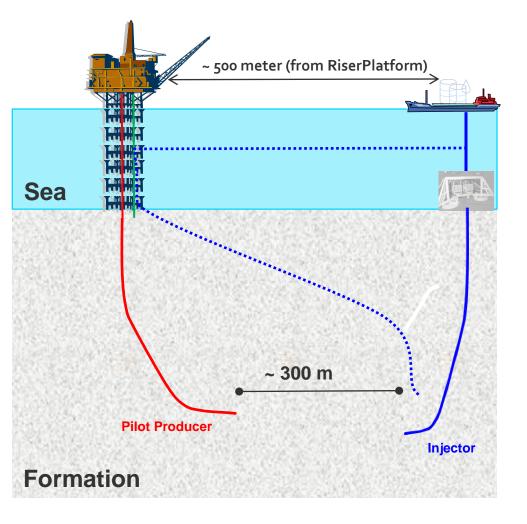
Classi**f**i1 cation:

Polymer pilot

Contraction -

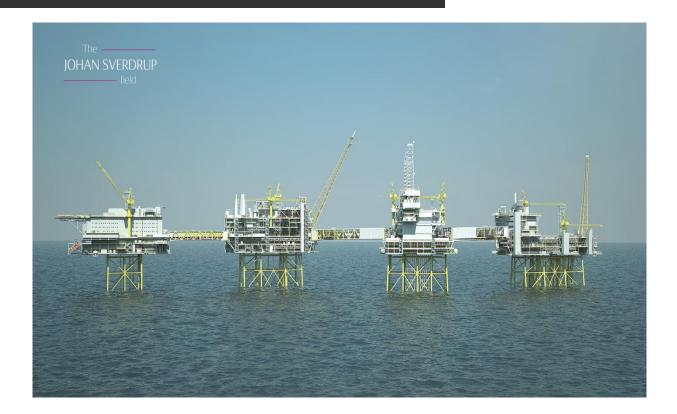
ET PR

Test Parameters


- Logistic chain assessement
- Preparation and injection of polymerised water
- Polymer viscosity topside and in the reservoir
- ► EOR effect
- Measurement of back produced polymer
- Impact of produced polymer on oil and water processing
- Reinjection of produced polymer

Pilot Sketch (1 Injector - 1 Producer)

- Prepared polymerised solution either on ship or at Riser Platform
- Injection in dry or subsea injector
- Distance injector producer
 ~ 300 meters



Pilot EOR Data Dathering (Petec scope)

lssue	Parameters	Data acquisition
Polymer medium quality (pre-injection)	μ(T), C _{polymer} , homogeneity, ionic composition (lowsal quality)	Topside sampling
Injectivity	Q/p	Well gauges; flowline rate gauge
In situ viscosity, injection {kh/µ}	р, Т	Down Hole Gauges
In situ viscosity, injection {µ}	μ, Τ	Conditional DH sampling on WL in injector
Incremental oil {Qoil, Water Cut}	Q (oil, water, gas)	Test separator rate gauges;
Displacement, drainage, dilution	tracer, Cpolymer, ionic composition	Test separator sampling; producer flowline sampling
Degradation	μ(T), C, MWDpolymer, ionic composition	Test separator sampling; flowline sampling; DH sampling on WL in producer (conditional, but likely)
Injectivity of PW with residual polymer	Cpolymer, PW (oil in water,suspended solids, Q/p	Sampling in degasser, well gauges, downhole gauge

Concluding Remarks

Concluding remarks

► Johan Sverdrup is an unconventional polymer candidate

- Moderate Potential and challenging economy
- o High temperature, high salinity, long well spacing leads to employ lowsalinity water

Particular offshore risks;

- o A subsea setting involves risk of choking leading to mechanical degradation
- $\circ~$ Compact water processing plant challenging

A pilot can/may provide some answers

- Preparation, injectivity, in-situ viscosity, EOR effect(if preflush), impact of produced polymer on facilities
- Extrapolation of pilot results to other parts of the field not trivial (well spacing)
- $\circ~$ Other sources of information necessary for an update of field potential post pilot

There's never been a better time for **GOOd ideas**

Presentation title

Presenters name Presenters title E-mail address@statoil.com Tel: +4700000000

www.statoil.com

