

Lithology Distribution in the Zechstein **Supergroup and Controls on Rift** Structure: Greater South Viking Graben, Northern North Sea

Christopher Jackson¹, Elisabeth Evrard¹, Gavin Elliott¹, Robert Gawthorpe²,

¹ Basins Research Group (BRG), Department of Earth Science & Engineering, Imperial College, Prince Consort Rd, London, SW7 2BP, UK

²Department of Earth Science, University of Bergen, Allégaten 41, 5007 Bergen, Norway

FORCE

email: c.jackson@imperial.ac.uk

FORCE Salt Tectonics Seminar

14th November 2014

Salt Deposition

- ۲ 4 Basin-fill halite (BFH), early TST gypsum HST TST HST drawdown LS-BFH TST TST 3 Lowstand halite/bittern salts pans and lakes seepage HST HST TST TST 2 Lowstand gypsum wedge during slow sea level fall sl_ **HST** sill/barrier TST Highstand open basin, carbonate rim 1 SI Open After Tucker (1991) ocean HST sill/barrier TST Carbonates Gypsum/ Halite pinnacle reefs/mud Anhydrite mounds
 - Carbonate-evaporite basin subjected to complete

Bittern salts

Analogues

modified from Peterson and Hite (1969), Hite and Buckner (1981) and Stroud (1994)

- Basin physiography can control lithology distribution in salt basins
- Post-depositional salt flow may modify primary lithology distribution
- Does present (post-flow) lithology distribution reflect primary distribution?

Rationale and Previous Work London

- Lithology distribution in Zechstein Supergroup (ZSG) 'well known' in UK North Sea; mapping based on on variations in structural style with sparse (published) well calibration...
- Four depositional zones; carbonate-rich at basin margin (Z1-2) and halite-rich in centre (Z3-4)
- Lithology distribution in Norwegian North Sea poorly understood
- Well and seismic data from the Norwegian North Sea are used to investigate lithology variations in the ZSG and how these variations affect the evolution of rift systems
- Lithology variations may impact reservoir/seal potential, heat flow, etc

Study Area

Salt Thickness and Structure

Lithology Identification

- Five lithologies identified based on cuttings from 10 wells: (i) halite; (ii) anhydrite; (iii) carbonate; (iv) carnallite; and (v) shale
- Cuttings-calibrated petrophysical data cross-plotted to determine lithology identification in wells lacking cuttings

Lithology Identification

- Anhydrite-Halite: relatively dense clustering; easy to discriminate between on logs
- Carbonate-Shale: relatively weak clustering; difficult to discriminate between on logs
- Anhydrite denser and slightly 'slower' than carbonate and shale

Lithology Identification

3.1

2.9

2.7

2.5

2.3

Simperial College London 3

ß

▲ carbonates

shales

Carbonate cannot be differentiate from shale based on petrophysical characteristics alone

Lithology Distribution - UH

Lithology Distribution - UH

- Relatively thin ZSG (up to 120 m)
- Anhydrite, carbonates and shales; no halite

Lithology Distribution – ST-LG

Basin margin-to-basin centre

Lithology Distribution – ST-LG

- ZSG thin (up to 50 m) and anhydrite-, carbonate- and shale-rich on basin margin
- ZSG and thick (>1000 m) and halite,-rich in basin centre
- Note across-fault thickness and lithology change

Lithology Distribution – LG-SH

Basin centre-to-basin margin-to-basin centre 10 3° 2° 40 VORWAY Ν 51 Norway 59° Fladen Ground study area Spur Utsira Denmark High Åsta Graben South Germany Viking UK Netherlands Sleipner Graben Basin 200 km Sele High Stavanger Platform Ling 17/11-1 17/12-1R Graben Witch Ground 17/12-2 Graben 16/11-15 16/10-1 58° Egersund Basin 20 km Pre-Jurassic and Shallow Terraces and Intra-Basinal Key **Deep Jurassic Basin** Platform Cretaceous Basin in Platform Elevations

Lithology Distribution – LG-SH

Imperial College

ZSG Lithology Distribution

Basin-Scale Context

Imperial College

Controls on Lithology Distribution

What controls lithology distribution in the ZSG in the Norwegian sector of the North Sea?

Model 2:Pre-ZSG fault movement

Model 3:Syn-ZSG fault movement

Model 1: no Early Permian rifting; ZSG deposited **before** Late Jurassic rifting; erosion and carbonate-dominated caprock develops on structural highs due to post-depositional footwall uplift

Imperial College

Model 2: ZSG deposited across underfilled Early Permian rift-related relief; LST halite deposition in basins and HST carbonate/anhydrite deposition on margins

<u>Model 3:</u> deposition of ZSG during Late Permian rifting; lithology variability was controlled in the same way as for Model 2.

Late Permian Relief?

- northern
 Egersund Basin
- NE margin of the pan-European ZSG salt basin
- Salt pinch-out onto present-day structural high
- Is relief riftrelated? If so, to which event?

Late Permian Relief?

Late Permian Relief?

- Low-relief (few tens of metres) erosion surface developed along base salt)(top Rotliegend/Lower Permian)
- Erosional 'furrows' up to a few kilometres long and wide
- Only developed in footwall

Pre-ZSG Rifting?

- Stage 1 (Early Permian) SFS active?
- Stage 2 (Mid-Permian to earliest Late Permian) – SFS active; fault scarp relief developed and eroded; by fluvial systems; onset of ZSG onlap on fault scarp
- Stage 3 (Late Permian) Onlap of ZSG onto and preservation of fault scarp relief
- Evidence for pre-ZSG (Early Permian) rifting?

Influence of ZSG on Rift Structure

Imperial College

Seismic data reveals influence of ZSG lithology variations on rift structural style across the South Viking Graben and NE margin of the Central Graben

Northern South Viking Graben

Imperial College

- No salt-related deformation on basin margin; ZSG too thin and immobile
- Updip thin-skinned extension due to hangingwall tilting; formation of salt rollers

Ling Graben

- Diapirism in basinal areas comprised of thicker more mobile ZSG
- Reactive diapirism driven by thin-skinned extension?

Ling Graben

- Diapirism in basinal areas comprised of thicker more mobile ZSG
- Subtle thin-skinned extension and minor diapirism on structural highs

Conclusions

- Petrophysical and cuttings data allow construction of a lithology framework for the ZSG in Norwegian sector of the eastern North Sea
- Seismic mapping and stratigraphic correlations reveal prominent regional thickness and lithology variations in ZSG
- Four depositional 'zones' (sensu Clark et al. 1998) identified:
 - Basin margin carbonate- anhydrite- and clastic-dominated (Zones 1 and 2)
 - Basin centre halite-dominated (Zones 3 and 4)
 - Lithology transitions locally fault-controlled
 - Other lithology transitions controlled by subtle base salt relief
- Triassic and Jurassic rift structural styles linked to ZSG lithology:
 - Depositional Zone 1 no diapirism or low-relief diapirs
 - Depositional Zones 2 and 3 thin-skinned extension
 - Depositional Zones 3 and 4 high-relief diapirs and minibasins

A Trick of the Light?

- Does present lithology distribution reflect primary lithology distribution?
- Post-depositional erosion and dissolution (Model 1) cannot be ruledout; however, unlikely to be dominant control because basin-centre successions contain almost no carbonate and relatively little anhydrite, suggesting basin margin/intra-basin structural high successions not simply anhydrite- or carbonate-enriched versions of those encountered in basin-centre
- Differential expulsion of halite unlikely to be dominant control; thin basin margin/intra-basin structural high successions are not flanked by large salt structures
- Evidence for Early Permian faulting and dramatic changes in thickness and lithology of the ZSG across basement-involved normal faults, but no independent evidence for a phase of Late Permian extension, making it problematic to discriminate between Model 2 and 3.

Differential Salt Flow

inflation

- Stage (i) pre-thinning salt
- Stage (ii) salt thinning; preferential expulsion of lowviscosity halite
- **Stage (iii)** (apparent) welding; complete evacuation of halite; remnant non-halite (high-viscosity) lithologies
- Diapir grows in response to preferential addition of lowviscosity halite (cf. 'differential purification by movement' (sensu Kupfer, 1968)

Differential Salt Flow

modified from Wagner & Jackson (2011)

Ling Graben

Southern South Viking Graben

Imperial College

 http://written-in-stone-seen-through-mylens.blogspot.co.uk/2013_05_01_archive. html

