

**MJECO** 

# Triassic stratigraphic architecture, reservoir quality,

# Machine Learning

and

Eirik Larsen<sup>1\*</sup>, Behzad Alaei<sup>1</sup>, Dimitrios Oikonomou<sup>1</sup>, Christopher A-L. Jackson<sup>1,2</sup>, Idar A. Kjørlaug<sup>3</sup>, Kristian Helle<sup>3</sup>, Ryo Sakamoto<sup>3</sup>

<sup>1</sup>Earth Science Analytics AS

<sup>2</sup>Imperial College <sup>3</sup>Moeco Oil & Gas Norge AS \*email: eirik.larsen@earthanalytics.no



# Triassic stratigraphic architecture, reservoir quality,

# Machine Learning

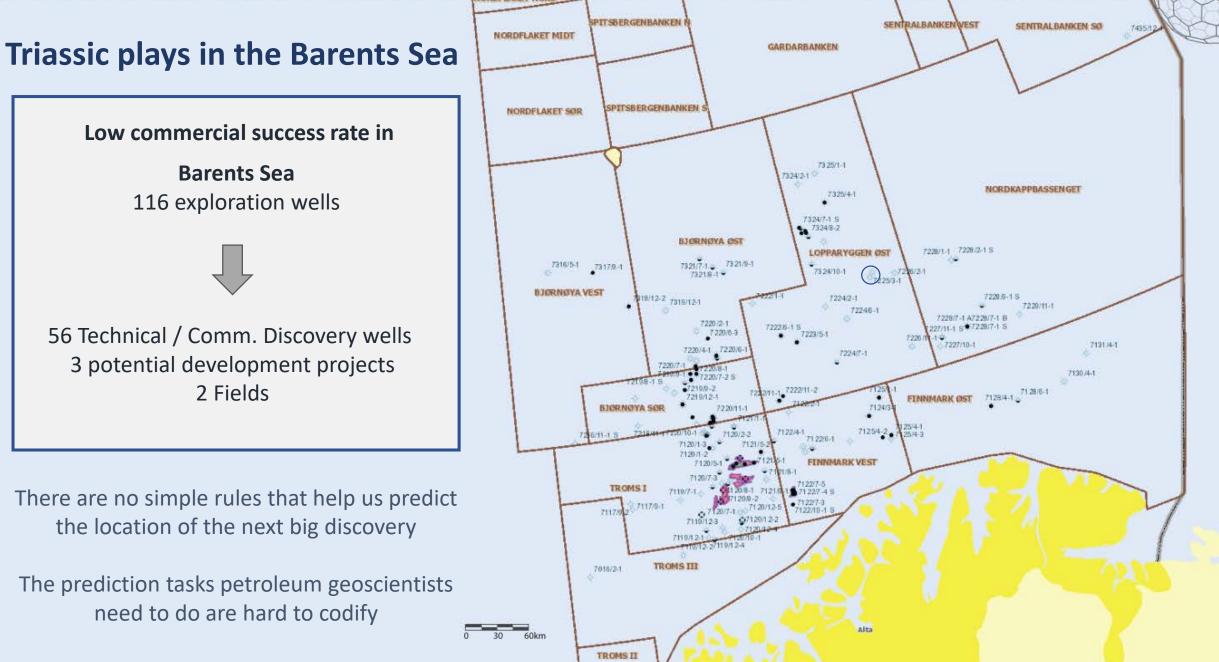
and





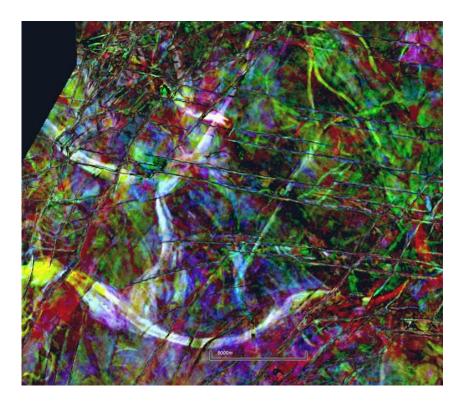
Can a computer learn to map stratigraphic architecture and reservoir quality...

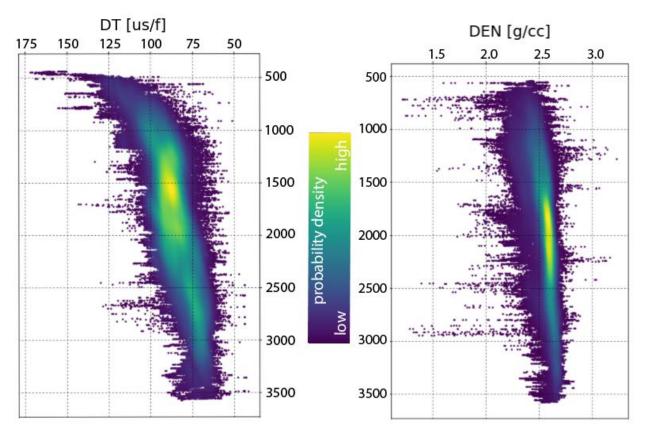
by training on data?



# We have a lot of good data

- Excellent seismic imaging of sedimentary geology
- Abundant log and core data available





Can we use this data, and artificial intelligence, to improve reservoir prediction?

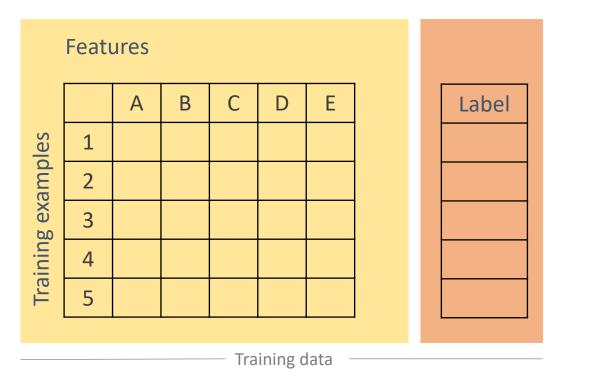
# What is Machine Learning and Supervised Learning?

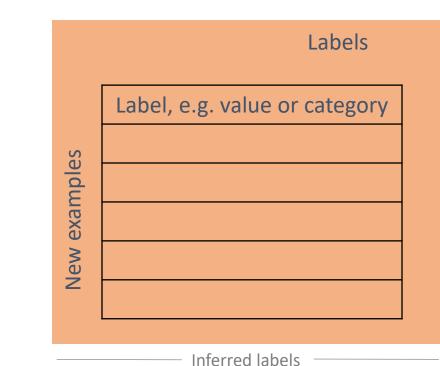
Machine learning: "gives computers the ability to learn without being explicitly programmed" Arthur Samuel, 1959

Machine-Learning Model

Supervised learning: "the machine learning task of inferring a function from labeled training data"

#### Input





#### Output

### How can we apply Machine Learning to reservoir quality studies?

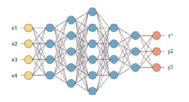
| <b>Input</b><br>Features |                 |  |  |
|--------------------------|-----------------|--|--|
| Wireline logs            | core data       |  |  |
| AI, Vp/Vs                | logs, core data |  |  |
| Partial stacks           | logs, core data |  |  |
| Training data            |                 |  |  |

ML models









Output Labels

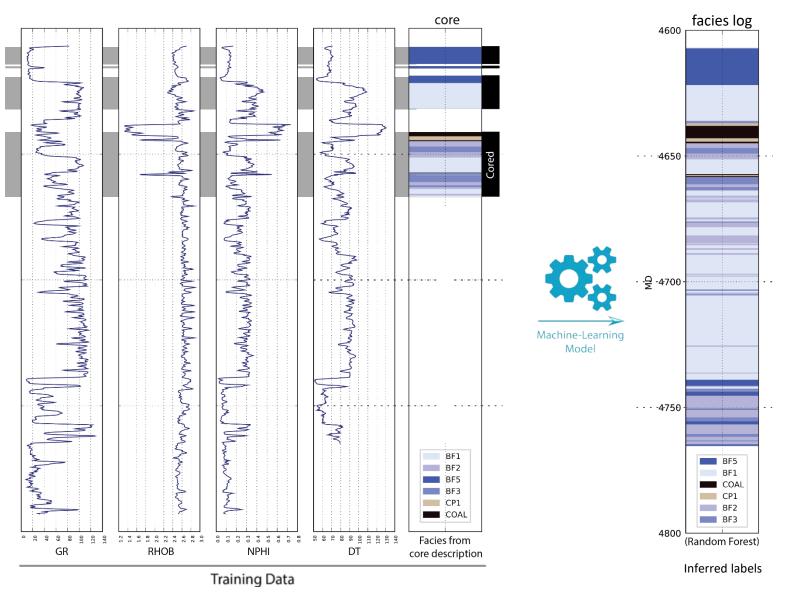
Porosity, permeability, facies, and facies association **logs** 

Porosity, permeability, facies, and facies association **cubes** 

Porosity, permeability, facies, and facies association **cubes** 

Inferred labels

## **AI-Assisted Facies Classification**



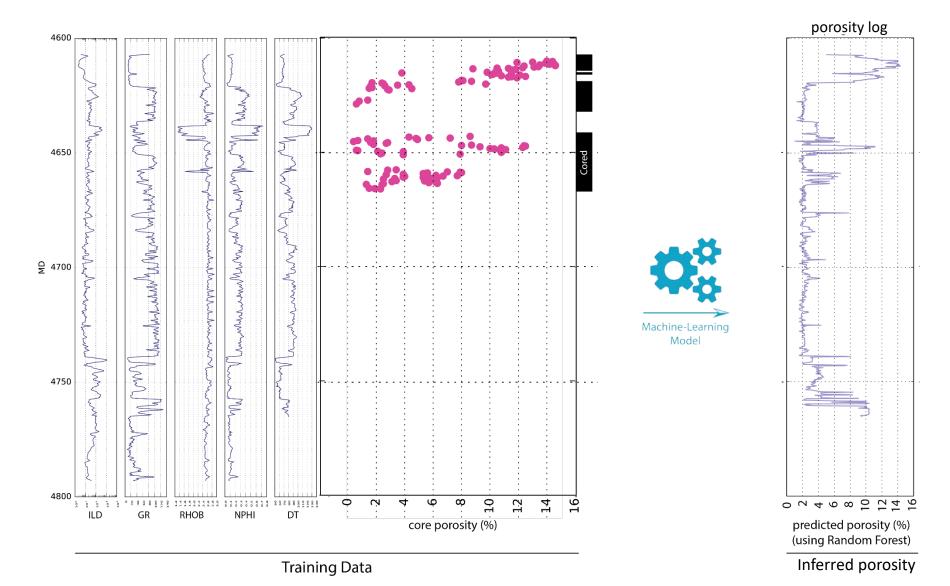
#### **Supervised Learning**

"learns a function from labeled training data"

#### Inference

"the function can be used to label new data"

### **AI-Assisted Rock-Property Prediction**

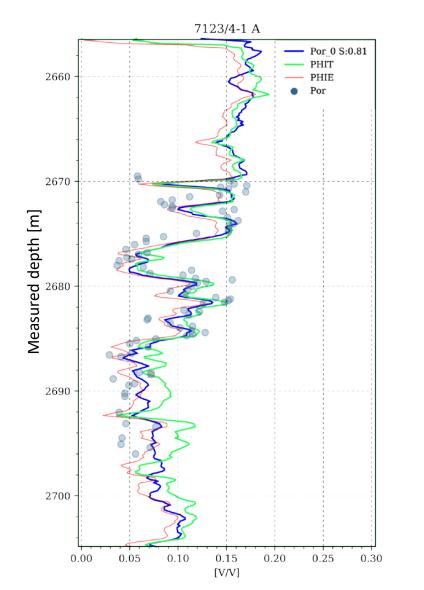


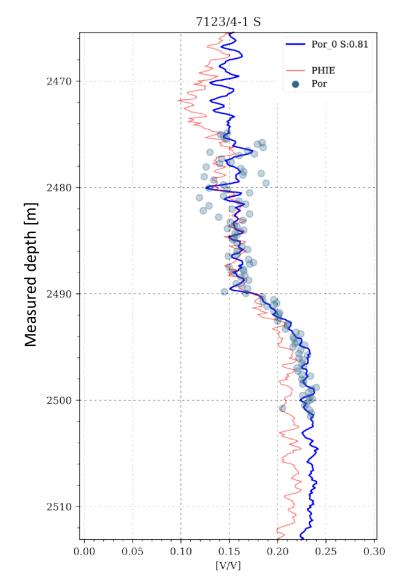
Supervised Learning can be applied to predict:

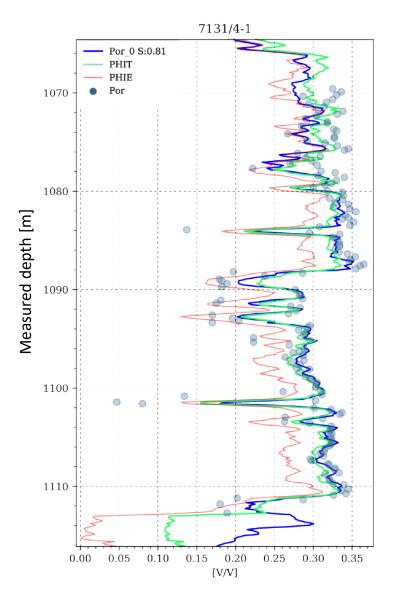
- Porosity
- Permeability
- Saturation
- Source Rock properties
- Or any property

« We simply need data to train on »

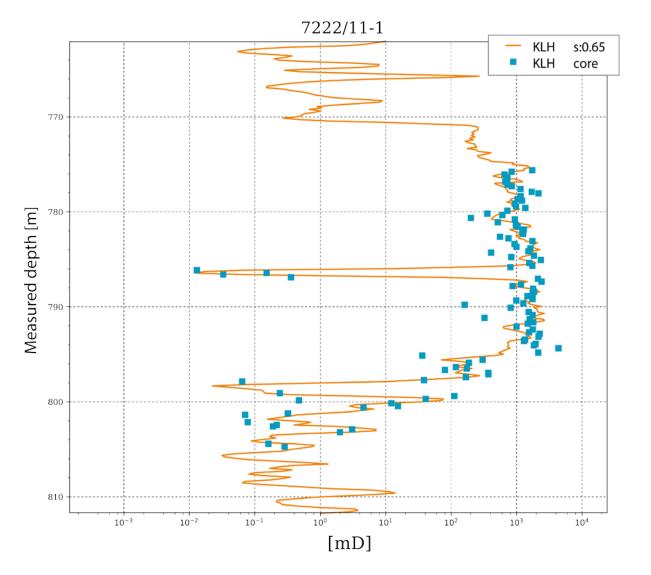
## AI-Assisted Porosity Prediction; Snadd and Kobbe formations







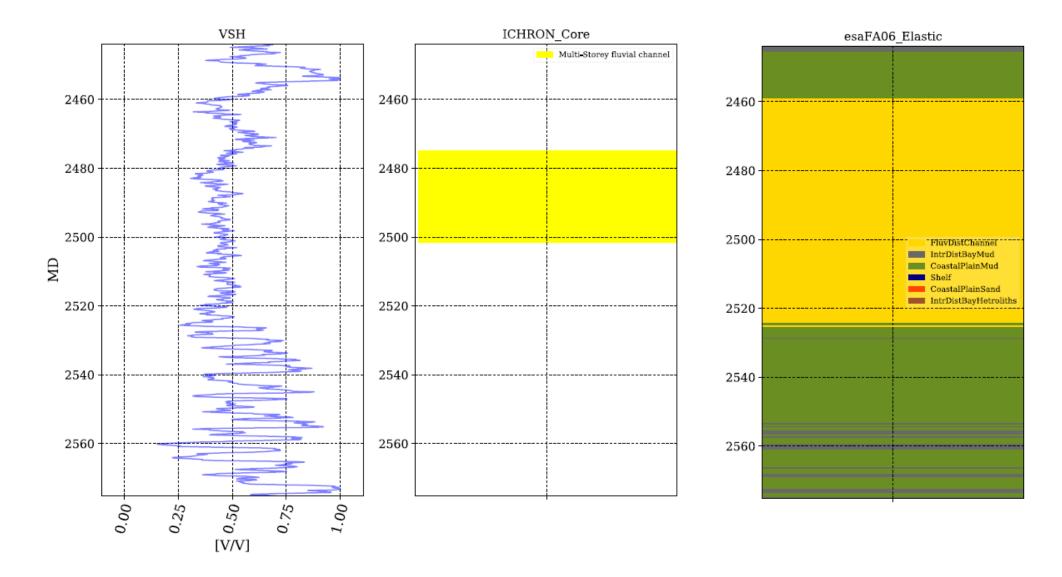
# Al-Assisted Permeability Prediction; Snadd and Kobbe formations



Permeability is predicted from wireline logs and core data

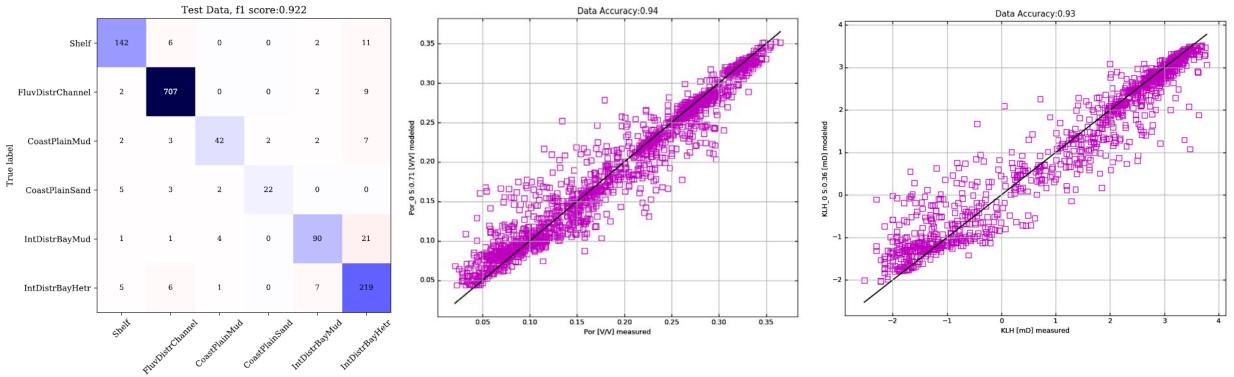
- Input logs: DEN, DT, DTS\_mlFilled, NEU, RDEP, RMED, Formation, Depth, Relative position in formation
- Note that KLH is <u>not</u> estimated as a function of porosity

### AI-Assisted Facies Prediction; Snadd Formation



## Measuring accuracy

#### By blind testing



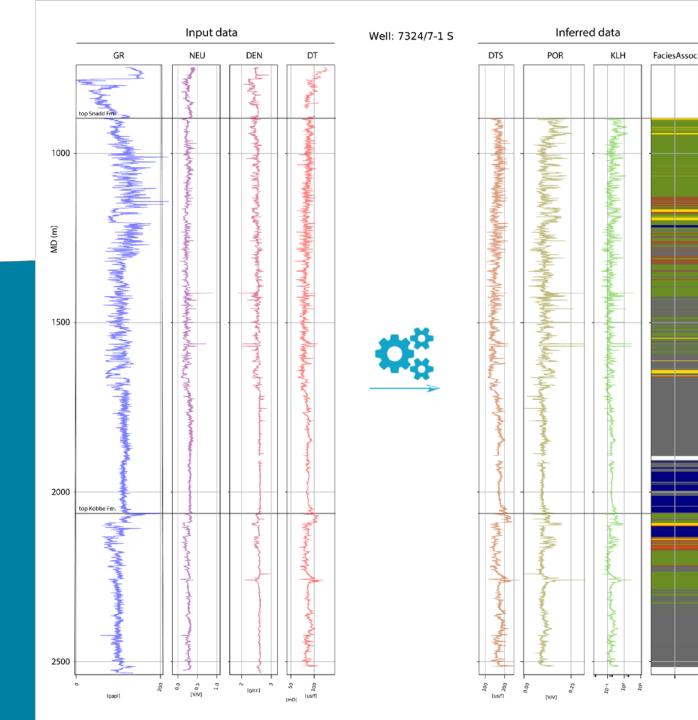
Predicted label

E/AN

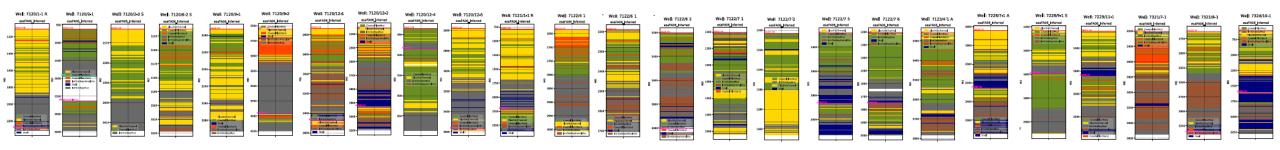
EARTH SCIENCE ANALYTICS

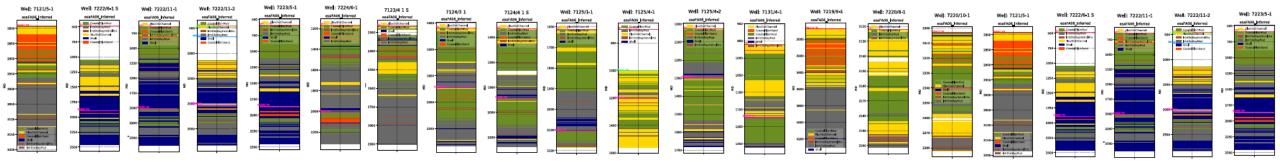
Rock properties are predicted for the Snadd and Kobbe formations in all available wells

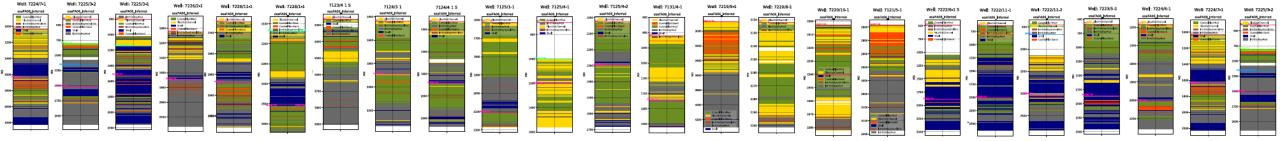
|                     |        | Blind test | 60/40 split |
|---------------------|--------|------------|-------------|
| Shear sonic         | score: | 93,4%      | 99%         |
| Porosity            | score: | 71,4%      | 88%         |
| Permeability        | score: | 35,9%      | 81,4%       |
| Facies associations | score: | 50,0%      | 92,2%       |

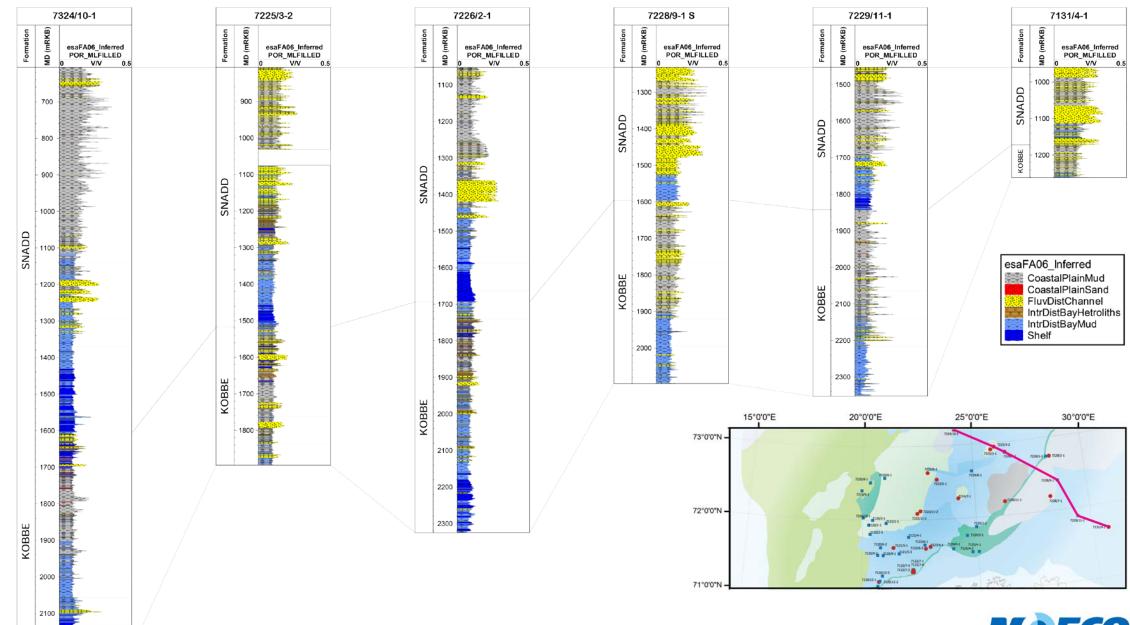


## Orders of magnitude increase of data set



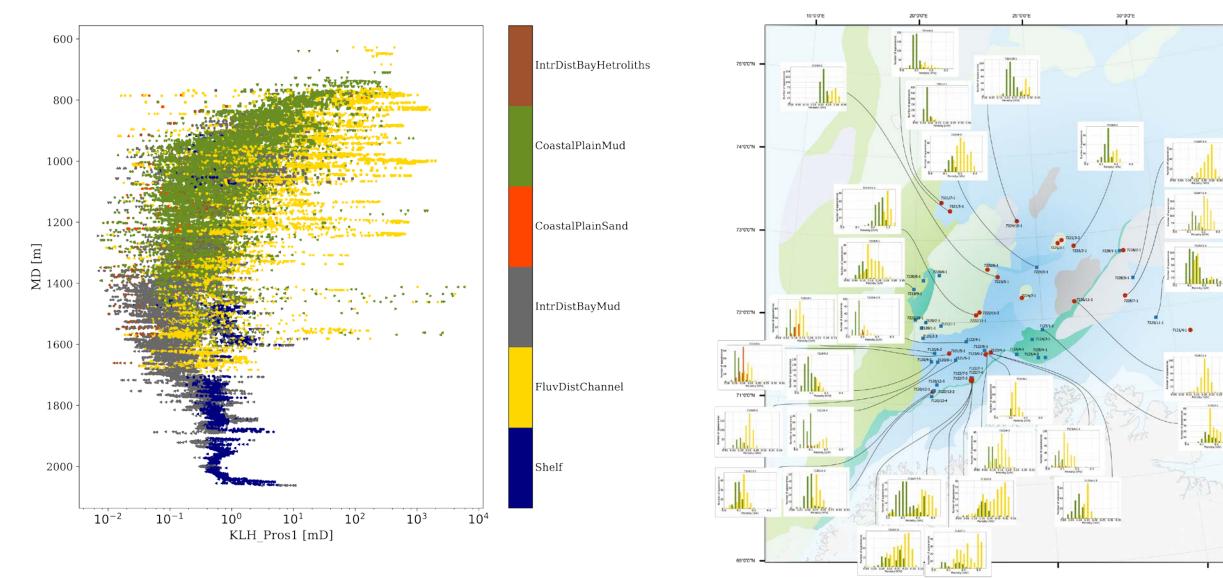






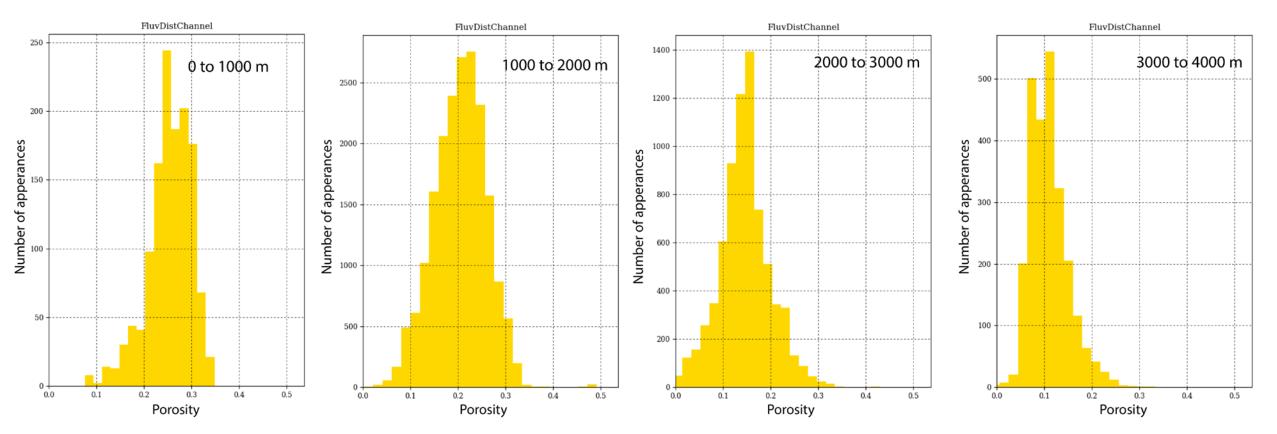
Μ)ΕСО

## Regional reservoir-quality distribution studies



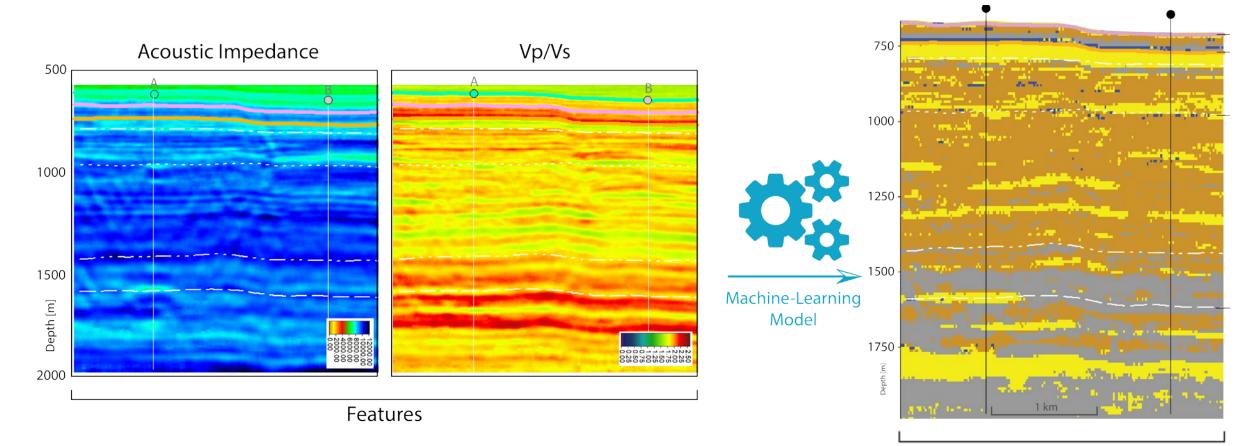
# **Probabilistic analysis**

The high efficiency of Machine-Learning methods make them suitable for generating input to probabilistic predictions (Monte Carlo Simulation)



Useful when rock properties can not be derived directly from seismic

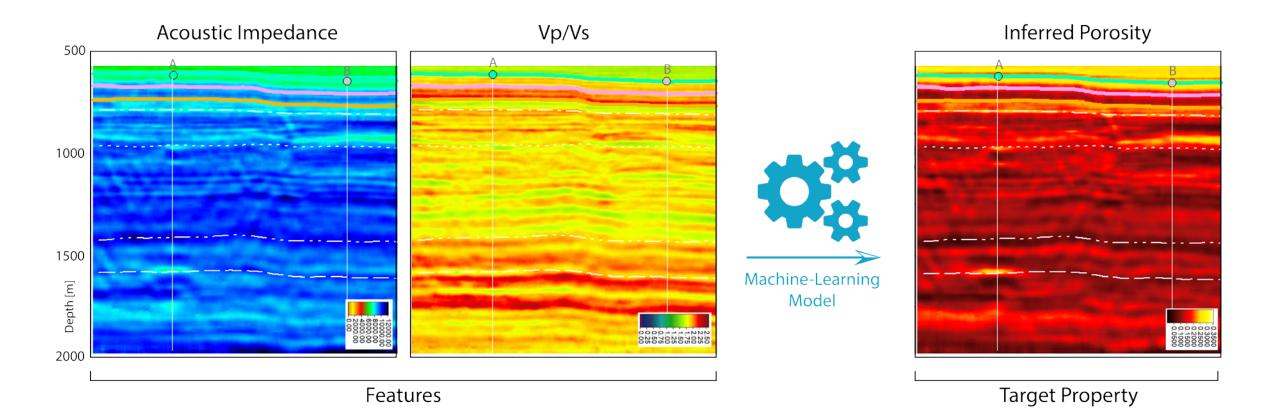
### Facies prediction from seismic Rock property prediction between wells



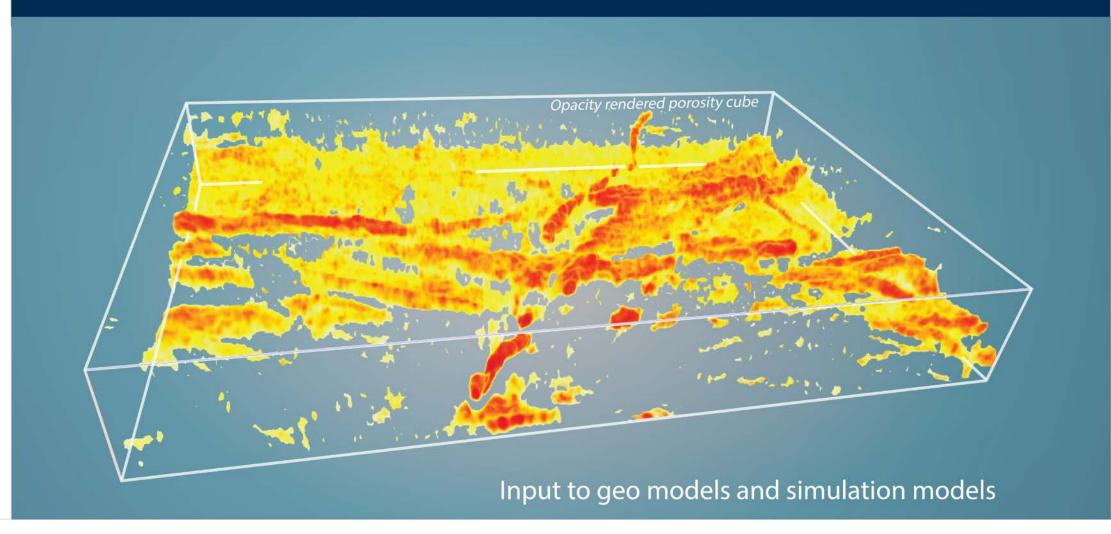
**Facies labels** 

# Porosity Prediction from seismic





# 3D rock and fluid property cubes from well and seismic data



## Knowledge transfer from data-rich to data-poor areas

#### Training

Select data that are relevant for area of interest

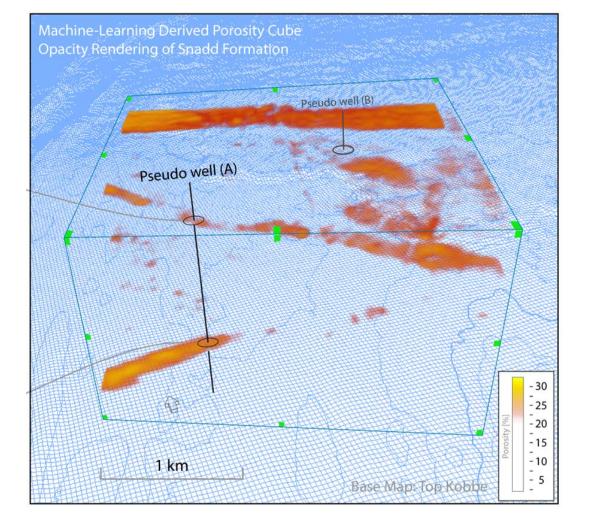
#### Inference

Can also be done in areas without well data

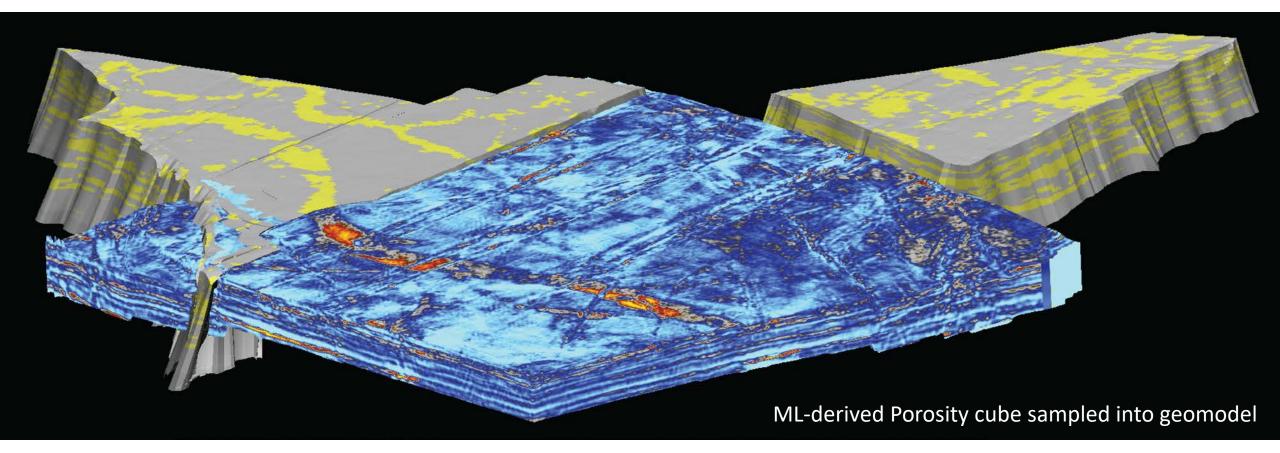
#### **Uncertainty estimation**

The efficiency of Machine Learning methods enables us to run multiple scenarios quickly

Scenario analysis with multiple analogs

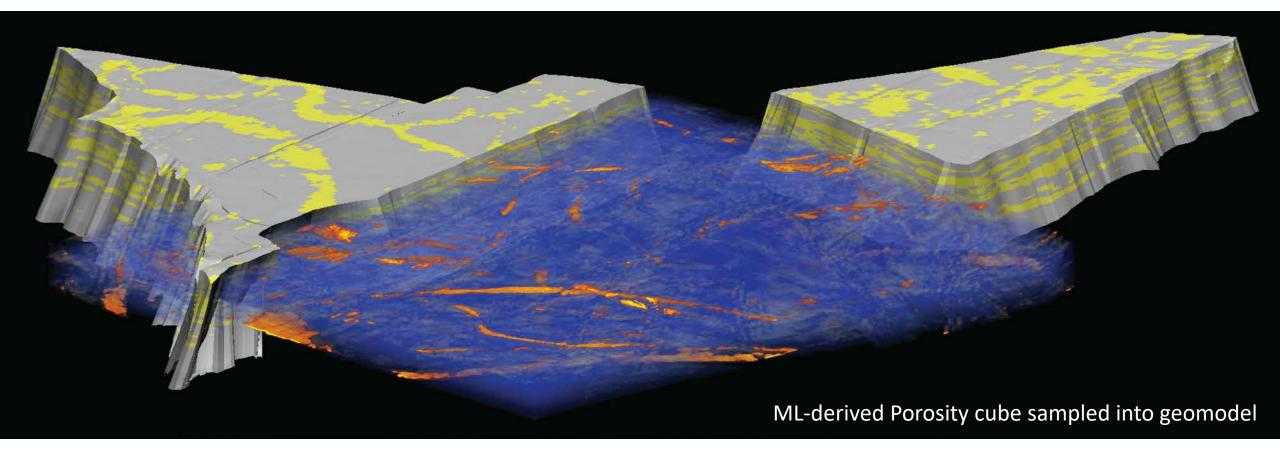


### Machine-Learning assisted reservoir characterization



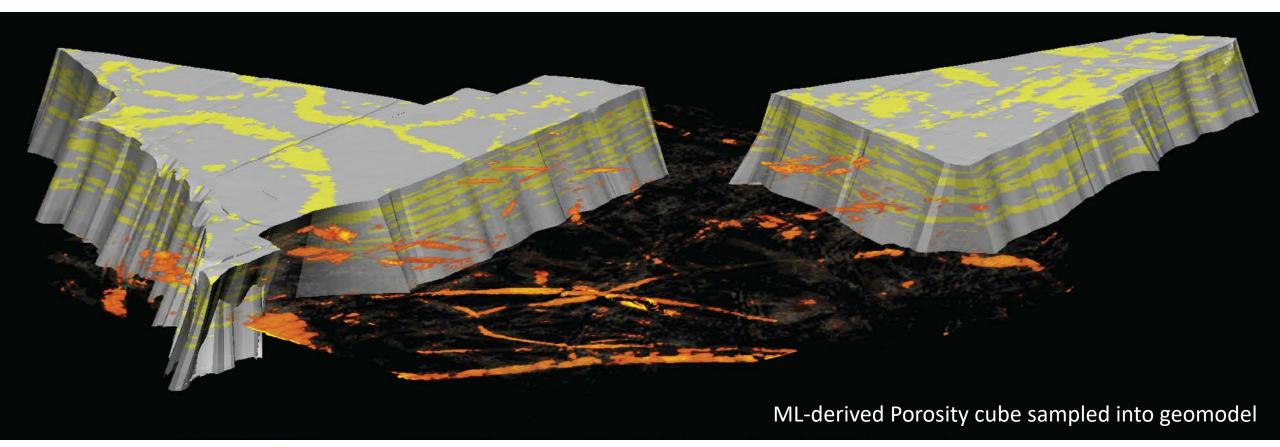


### Machine-Learning assisted reservoir characterization





### Machine-Learning assisted reservoir characterization





### What have we learned about Triassic stratigraphic architecture and reservoir quality?

**EARTH SCIENCE** 

**ANALYTICS** 

#### The ML approach enables us to:

- Quantify reservoir architecture
- Quantify porosity and permeability distribution
- Estimate reliability of empirical functions
- Estimate uncertainty of reservoir-quality predictions
- Improve workflow efficiency
- Utilize the large volume of data available

and not least, this novel approach gave us:

More freedom and time to be creative and collaborate across disciplines