

Chris Townsend

Flexigrid – UiS research project proposal

Flexigrid Project

- **O** Proposed University of Stavanger research project
- O New way of handling structural uncertainty in 3D grids
- O Attempt to overcome a number of issues related model ensembles
- **O** Asking for funding from the oil industry
- O Employ 2 new researchers at UiS; PhD and/or Post–Docs

O UiS Staff: Chris Townsend, Nestor Cardozo, Pål Andersen & Espen Knudesen*
* Cegal

Facies vs Structural Models

Scenario/Ensemble methods need both facies/properties and structural

Outline

- **O** Explain the structural modelling process
- **O** Discuss the application of structural uncertainty and current problems
- O Explain the aims of Flexigrid project to overcome these issues
- **O** Outline of the Flexigrid project

Faults

- horizons terminate <u>'exactly'</u> at the fault
- faults are located <u>'exactly'</u> at horizon terminations
- faults and horizons are intrinsically linked!!

Structural Modelling Process – Faults

Structural Modelling Process – Horizons

Structural Modelling Process – 3D Grid

Fault Modelling – Horizon 'cut–back'

Fault-Horizon Modelling – Fault Lines

- Fault lines are used to control fault offset
- problem is generating & editing
- difficult to repeat for multiple structural realisation

Faulted Grid

Structural Uncertainty

Structural Uncertainty Modelling Issues

- **O** 3 Main Issues with current workflows, create problems for handling structural uncertainties in an efficient and reliable process
 - 1. fault manipulation fault building process has to be repeated
 - 2. fault or horizon manipulation independent of each other
 - 3. horizon modelling around faults becomes unreliable

Issue 1 – manipulation > fault modelling

Issue 2 – horizons/faults independent

Issue 3 – horizons around faults

Issue 3 – horizons around faults

Flexigrid – Solutions

- **O** How do we intend to solve these problems?
- **O** Generate realistic multiple–structural–realisations
 - without user intervention
- Difference: all uncertainty modelling takes place on an already constructed 3D-grid with its defined faults, seismic horizons and geological horizons

Faulted Grid

Grid Components

Grid Components: Fault Definition & Uncertainty

- Faults: defined by split in ZCORN values
- ZCORN points lie on COORD lines
- Move COORD Move the Fault
- O Move ZCORN Move the Horizon
- Move COORD/ZCORN Horizon/Fault definition maintained
- **O** Uncertainties
 - depth corner points
 - isochore corner points
 - displacement CP per fault block
 - fault location COORD line

Faulted COORD line: Red – footwall (up-thrown) Blue – hangingwall (down-thrown)

Red (4 common ZCORN values) ≠ Blue (4 common ZCORN values)

Fault Location Uncertainty

Fault Location Uncertainty

Fault Definition & Uncertainty

Grid Fault Uncertainty Method:

- 1. determine translation distance for each fault
- 2. determine vectors for branch-lines
- 3. determine vectors for fault COORD lines
- 4. determine vectors for non-faulted COORD lines
- 5. apply translation to whole grid simultaneously
- 6. apply elevation changes to ZCORN (horizon shift)

Summary

Flexigrid Project

O Proposed University of Stavanger research project

- 4 year project
- **O** Investigate different methods of handling structural uncertainty in 3D grids
 - Petrel-centric, but methods should be applicable to other software
- O Attempt to overcome a number of issues related model ensembles
- O Deliverables include
 - plugins and/or test software to run the techniques developed
 - description of the methods tested and implemented
 - meetings, input, publications etc

Flexigrid Project

- **O** Asking for funding from the oil industry
 - aim for 4 sponsoring companies (minimum 2)
- O Cost per company is Kr740k per year over 4 years
 - significant flexibility in payment schedule
- O Employ 2 new researchers at UiS; PhD and/or Post–Docs
 - ideally 1 PhD and 1 Post–Doc
 - 1 geologist and 1 programmer
- O Project proposal available through FORCE or UiS
 - further discussions
 - individual company presentations
- Further details: Chris Townsend (chris.townsend@uis.no, +47 90114323) or Nestor Cardozo (nestor.cardozo@uis.no, +47 40629562)

