Geologic Time Scale 2020, with special reference to the Cretaceous Period. Felix M. Gradstein

http://www.tscreator.com

Why a new Geologic Time Scale ?

Better built, more accurate and more precise

• 75 of 103 stage boundaries formally defined versus < 60 in 2012

Cenozoic orbitally tuned (20 - 40 kyr accuracy); some cycle scaling of Cretaceous, Jurassic, lower Triassic and Carboniferous stages

 330 U/Pb and Ar/Ar ages (> 125 new since GTS2012) a majority < 0.5 myr external uncertainty

Improved statistical interpolations with detailed error analysis

•> 30 Phanerozoic stage boundaries changed age 0.5 - 6 Ma

Sixteen more chapters (now 45), including Phanerozoic Eustasy, Chemostratigraphy, Evolution/Biostratigraphy, Crustal Events

The Geologic Time Scale 2020

Volume 1

Chapter 1, Introduction Chapter 2, The Chronostratigraphic Scale Chapter 3, Evolution and Biostratigraphy Chapter 3A, Trilobites Chapter 3B, Graptolites Chapter 3C, Chitinozoans Chapter 3D, Conodonts Chapter 3E, Ammonoidea Chapter 3F, Calcareous nannofossils Chapter 3G. Planktonic foraminifera Chapter 3H, Larger foraminifera Chapter 3I, Dinoflagellates Chapter 3J, Plants, spores and pollen Chapter 3K. Microcrinoids Chapter 3L, Three major mass extinctions and Evolutionary Radiations in their Aftermath Chapter 4, Astrochronology Chapter 5, Magnetostratigraphy Chapter 6, Radiogenic istopes geochronology Chapter 7, Strontium isotope stratigraphy Chapter 8, Osmium isotope stratigraphy Chapter 9, Sulphur isotope stratigraphy Chapter 10, Oxygen isotope stratigraphy Chapter 11, Carbon isotope stratigraphy Chapter 12, Crustal events Chapter 12A, Influence of LIP's Chapter 12B, Paleogeographic reconstructions Chapter 13, Phanerozoic eustasy Chapter 14A, Geomathematical and statistical procedures Chapter 14B, Global composite sections and constrained optimization

Volume 2

Chapter 15, The Planetary Time Scale Chapter 16, The Precambrian Chapter 17, The Tonian and Cryogenian Periods Chapter 18, The Ediacaran Period Chapter 19, The Cambrian Period Chapter 20, The Ordovician Period Chapter 21, The Silurian Period Chapter 22, The Devonian Period Chapter 23, The Carboniferous Period Chapter 24, The Permian Period Chapter 25, The Triassic Period Chapter 26. The Jurassic Period Chapter 27, The Cretaceous Period Chapter 28, The Paleogene Period Chapter 29, The Neogene Period Chapter 30, The Quaternary Period Chapter 31, The Anthropocene 'Period'

Appendix 1, Recommended color coding of stages Appendix 2, Radiometric ages used in GTS2020

Principal Cretaceous ammonite genera

Subchapter 3E

Ammonoidea

A.S. Gale, D. Korn, A.J. McGowan, J. Cope and C. Ifrim

The Cretaceous Period

c0027

96.6 Ma Cretaceous

Chapter 27

Tethys time – global super Ocean

Boundaries of the twelve historical Cretaceous stages primarily defined by ammonites in France and The Netherlands.

Magnostratigraphy, microfossil zones or events and carbon isotope excursions added later.

Six ratified and six potential Global Boundary Sections and Points (GSSP's)

GSSPs of the Cretaceous Stages, with location and primary correlation criteria

Stage	GSSP Location	Latitude, Longitude	Boundary Level	Correlation Events	Reference
Maastrichtian	Tercis les Bains, Landes, France	43°40'46.1"N 1°06'47.9"W*	level 115.2 on platform IV of the geological site at Tercis les Bains	Mean of 12 biostratigraphic criteria of equal importance. Near ammonite FAD of <i>Pachydiscus neubergicus</i>	Episodes 24 /4, 2001
Campanian	candidates are in Italy and in Texas			Crinoid, LAD of Marsupites testudinarius or base of Chron C33r	
Santonian	Olazagutia, Northern Spain	42°52'5.3"N 2°11'40"W	94.4 m in the eastern border of the Cantera de Margas quarry	Inoceramid bivalve, FAD Platyceramus undulatoplicatus	Episodes 37 /1, 2014
Coniacian	candidates are in Poland (Slupia Nadbrzena) and Germany (Salzgitter)			Inoceramid bivalve, FAD of Cremnoceramus deformis erectus	
Turonian	Pueblo, Colorado, USA	38°16'56"N 104°43'39"W*	base of Bed 86 of the Bridge Creek Limestone Member	Ammonite, FAD of Watinoceras devonense	Episodes 28 /2, 2005
Cenomanian	Mont Risou, Hautes-Alpes, France	44°23'33"N 5°30'43"E	36 m below the top of the Marnes Bleues Formation on the south side of Mont Risou	Foraminifer, FAD of Thalmanninella globotruncanoides	Episodes 27 /1, 2004
Albian	Col de Pré-Guittard Section, Drôme, France	44°29'47"N 5°18'41"E	37.4 m above the base of the Marnes Bleues Formation and 40 cm above the base of the Kilian Niveau	Foraminifer, FAD of Microhedbergella renilaevis	Episodes 40 /3, 2017
Aptian	candidate is Gorgo a Cerbara, Umbria-Marche, central Italy			Base of Chron M0r; near ammonite, FAD of Deshayesites oglanlensis	
Barremian	candidate is Río Argos near Caravaca, Murcia province, Spain			Ammonite, FAD of Taveraidiscus hugii	
Hauterivian	La Charce Section, Drôme Province, southeast France	44°28'10"N 5°26'37.4"E	base of Bed 189 of La Charce Section	Ammonite, FAD of genus Acanthodiscus	
Valanginian	candidate is near Caravaca (S. Spain)			Calpionellid, FAD of Calpionellites darderi	
Berriasian	Tré Maroua, SE of Gap, southeast France			Calpionellid, FAD of Calpionella alpina	
*a					

Maastrichtian

GSSP for the Maastrichtian Stage

GSSP for base of Maastrichtian Stage at Tercis, France is 90-cm below lowest occurrences of ammonoids Pachydiscus neubergicus and Hoploscaphites constrictus.

Difficult GSSP in the Tercis section, France No real GSSP, no geomagnetics and no good planktonic events

Newsletters on Stratigraphy, Vol. 45/1, 25–53 Stuttgart, April 2012 Article

Global correlation of Upper Campanian – Maastrichtian successions using carbon-isotope stratigraphy: development of a new Maastrichtian timescale

Silke Voigt¹, Andrew S. Gale², Claudia Jung¹, and Hugh C. Jenkyns³

Inter-basinal correlations and 405 kyr cycles

Santonian-Campanian boundary

Two separate bug definitions have grown up on account of provinciality and usage, solved by carbon isotopes that link crinoid and planktonic forams sections.

Proposed GSSP for the Santonian-Campanian boundary, Gubbio, Italy with magnetostratigraphy, carbon isotopes and biostratigraphy

Bottacione Gorge at Gubbio, Umbria, Italy.

The beginning of Chron C33r, with global recognition in pelagic and continental settings.

Close to the extinction of *D. asymet*rica and changes in the nannofossil *Broinsonia*.

Distinctive double (a, b) positive excursion in δ 13C, (LSE – Late Santonian Event) enables detailed global correlation.

Principal Santonian-Campanian boundary markers

Dicarinella symetrica (D.carinata) LAD

Postuma 1971 p025-4.JPG

Broinsonia parca var.

Correlation from Gubbio using carbon isotopes and biostratigraphy for Santonian-Campanian boundary correlation

GSSP proposal for the Coniacian Stage Salzgitter-Salder Quarry section (Lower Saxony, Germany)

GSSP proposal Coniacian Stage

Salzgitter-Salder Quarry section (Lower Saxony, Germany)

Walaszczyk et al. (2020)

GSSP Turonian Stage

GSSP for base of the Turonian Stage near Pueblo, Colorado, USA. The GSSP level is LO *Watinoceras devonense*.

New high-precision age date 93.90 ± 0.15 (Meyers et al. 2012

Pilocene

Miocene Oligocene Eocene

Paleocene

Late

Early

Late

Middle Early

Late

Early Lopingian

Guadaluplar

Cisuralian

Late

Eart

Late

Middle

Early

Wenloc

Llandovery

Late Middle

Early

Middle

Early

Paleogene Neogene

Cretaceous

Jurassic

Triassic

Permian

Carboniferous

Devonian

Silurian

Ordovician

Cambrian

Paleozoic

Cenozoic

Mesozoic

Boundary age of 100.5 ± 0.14 Ma.

Global correlation of Cenomanian sequences: Evidence for Milankowitch control on sea level

Gale et al., 2002, GSA Bulletin.

Figure 4. Comparison of relative sea-level rise with eustatic rise for Odiyam-Kunnam region in Cauvery Basin, estimating basement thermal contraction subsidence as 4 m/400 k.y. Short-term sea-level changes for 12 sequences, measured from incised valleys, are superimposed on long-term relative sea-level rise and eustatic rise.

Jan Hardenbol

The Carbon Isotope Curve

 ${(^{13}C/^{12}C) \text{ sample} - (^{13}C/^{12}C) \text{ standard} x 1000}$

(¹³C/¹²C) standard

Stratigraphically powerful curve of changes in ¹²C/¹³C ratio of dissolved carbon in the ocean/atmosphere system *measured for example in foraminferal shells*

Biota prefer the lighter Carbon (¹²C) isotope

Burial of marine organic matter (< 12C in ocean) causes rise in δ^{13} Corg

Massive release of methane hydrates causes fall in δ¹³Corg (e.g. PETM) Large volcanic episodes (> ¹²C in ocean) cause fall in δ¹³Corg

Mid-Cretaceous Geomagnetic Quiet Zone complicates GTS, but carbon isotope trends provide global marine/non-marine correlations

OAE 2 (Bonarelli Event): Cenomanian–Turonian boundary Carbon isotope excursion spans the *M. geslinianum* to *W. devonense* ammonite zones, with the peak in uppermost Cenomanian. The associated organic-rich levels are named Bonarelli in central Italy.

Albian GSSP

Also nannofossil, ammonite and carbon isotope proxy markers !

Base Albian GSSP with proxy markers

Lowest occurrence of circular nannofossil *Prediscosphaera columnata* and lowest occurrence of nannofossil *Helicolithus trabeculatus*

Boundary marker: First occurrence of planktonic foramininfer Microhedbergella renilaevis.

Lowest occurrence of ammonite Leymeriella (L) tardefurcata at base of Niveau Paquier,

Distinctive negative carbon-isotope excursion just above base of Niveau Paquier in the Vocontian Basin, is a local manifestation of Oceanic Anoxic Event 1b.

Pres–Guittard, Drôme, France : APTIAN-ALBIAN boundary

Stratigraphic input data for the Late Cretaceous spline

Stage (base)	radiometric age, 2 sigma	name of UK bentonite	cycle and cycle-age assignmen	t stratigraphy-C chron assignment	mid km C-sequence	Reference
Danian	66.04 ± 0.05					This chapter
			66.31 ± 0.5	top of 30N	1371.84	Batenberg et al. 2012
			69.19 ± 0.5	top of 31N	1409.56	Batenberg et al. 2012
			70.08 ± 0.5	B.clinolobatus Zone ;mid 31R		Status Status Status - Status
			70.65 ± 0.5	top of 32N	1481.12	Batenberg et al. 2012; GTS2012
Maastrichtian			72.5 ± 0.5	B.eliasi Zone; mid 32N		This chapter; Appendix 2
	74.85 ± 0.43		184.5 74.3 ± 0.5	E.jenneyi Zone; top 33N	1549.41	This chapter; Appendix 2
			75.92 ± 0.5	R.calcarata Zone; upper 33N		This chapter; Appendix 2
			76.62 ± 0.5	B.scotti Zone; mid 33N		This chapter; Appendix 2
			197 79.9 ± 0.5	base 33N	1732.76	This chapter; Appendix 2
			~197 80.63 ± 0.5	B.obtusu s Zone; beneath base 33N	1723.76	This chapter; Appendix 2
Campanian	83.27 ± 0.11		~ 207	S.leei III Zone; base 33R	1862.32	\$1019 in Wang et al. (2016)
	84.13 ± 0.15			D.bassleri Zone		Sageman et al. (2014)
			207.5	34N		
Cantonian	95 50 + 0.25		96.06 + 0.25	ton Cundulaton licatus Zono		This shapter Assendin 2
Santonian	8J.J9 ± 0.5J		80.00 ± 0.35	top c.unauaiopheans Zone		This chapter, Appendix 2
Coniacian	89.86 ± 0.26	Lewes Marl	222			Gale 2019
	89.37 ± 0.37	Caburn Marl	224			<u>"</u>
	91.07 ± 0.28	Southerham Marls	225			"
	91.15 ± 0.26	Glynde Marls	226			"
	93.67 ± 0.31	Lulworth Marl	229			<u>n</u>
Turonian	93.79 ± 0.26	C-T bentonite	232 93.65 ± 0.5			Batenberg et al. 2016
	0642.004					D
mid Cenomanian	96.12 ± 0.31	Thatcher Bentonite	238 96.5 ± 0.5			Batenberg et al. 2016
-	99.7 ± 0.3		-	~ one subzone above GSSP	· · · ·	Takashima et al. 2019
Cenomanian	100.5 ± 0.14					GTS2016 and this chapter

143.1

Cenomanan - Maastrichtian cubic spline fit and time scale, using 15 radiometric ages, interpolated with 15 405 kyr cycle derived ages and stage durations, all aligned to the mid km M-sequence, with 7 chron-sequence distances.

Age of Late Cretaceous stages in GTS2012 and GTS2020

	GTS2012	GTS2020	uncertainty
Maastrichtian	72.1	72.2	0.2
Campanian	83.6	83.7	0.5
Santonian	86.3	85.7	0.2
Coniacian	89.8	89.4	0.2
Turonian	93.9	93.9	0.2
Cenomanian	100.5	100.5	0.1

Stratigraphic input data for the Early Cretaceous spline

Stage	radiometric age, 2 sigma	interpolated age with cycles	duration from 405 kyr cycles	stratigraphy-chron assignment	mid km M-sequence	Reference
		12 00020 20 1				
base Cenomanian	100.5 ± 0.14					GTS2016 and this chapter
			Albian duration 12.45 ± 0.5			Salation and a second second
base Albian	113.10 ± 0.3					GTS2016 and this chapter
early Aptian	121.20 ± 1			several ages dates in Appendix 2		
near base Aptian	122.01 ± 0.52			no biostrat; whole M0r	minus 4.9 ± 4.9	He et al. 2008; this chapter
			Aptian duration 8.1 ± 0.5			
base Aptian				near chron M0r	0 ± 2.5	
mid Barremian	123.10 ± 0.3			upper half of M1r	55.8 ± 2.2	Zhang et al. 2018 and in press; this chapter
Barremian	125.45 ± 0.43			entire M1r	68.5 ± 6.1	Pringle & Duncan, 1995
			Barremian duration 5.00 ± 0.5			
base Barremian		126.07 ± 0.25		upper part of chron M5n	120 ± 5	
Hauterivian	127.24 ± 0.25 (2 σ approx.)			upper Hauterivian, mid M5n	125.5 ± 5.5	Return to Agrio
Hauterivian	130.39 ± 0.25 (2 σ approx.)			uppermost M10N	213.5 ± 4.6	Aquirre-Uretta et al. 2017
			Hauterivian duration 5.93 ± 0.5			
base Hauterivian	131.29 ± 0.25			in chron M10n	198 ± 4	Aquirre-Urreta et al. in press
			Valanginian duration 5.06 ± 0.5			
base Valanginian		137.05 ± 1.0		chron M14r.3	347 ± 9	Martinez et al. 2015
Berriasian	139.24 ± 0.16			uppermost M17r	447.8 ± 9.9	Lena et al. 2019
	139.55 ± 0.18			M17r	457.7 ± 9.9	Vennari et al., 2014
	139.96 ± 0.17			M18n-M17r boundary interval	476.9 ± 9.3	Lena et al. 2019
	140.34 ± 0.18			M18r - M18n boundary interval	491.8 ± 5.8	35 25
	140.51 ± 0.16			base M18n to lower M17r	476.3 ± 19.6	" " revised Ogg, pers.comm.
	142.04 ± 0.17			lower M18r	503 ± 2.1	
	146.48 ± 1.63			M18r - M18n boundary interval	500 ± 5.1	Mahony et al. 2005
	and the second second second		Berriasian duration 5.27 ± 0.5			Kietzmann et al. 2018
base Berriasian				mid M19n.2n	526.3 ± 14	Berriasian Working Group, ICS
Tithonian	147.11 ± 0.18			early Tithonian; upper M22r	684.7 ± 4.3	Lena et al. 2019
			Tithonian duration 5.67 ± 0.5			Kietzmann et al. 2018
base Tithonian				base chron M22An	701 ± 2	

Short Aptian in GTS2020

Age estimates using three definition for base Aptian

Long Aptian (13.3 myr) in GTS2012 with base at 126.3 Ma

Duration of Aptian Stage based on high-resolution cyclostratigraphic interpretation of the Piobboco core of central Italy (Huang et al., 2010) relative to a U-Pb date of 113.1 \pm 0.3 Ma near the Aptian/Albian boundary (see Ogg et al., 2012).

Short Aptian (8.2 myr) in GTS2020 with base at 121.3 Ma Piobboco core Milankowich cyclicity is wrong.

Hauterivian-Barremian boundary at 126.02 Ma (Martinez et al., 2015).

Magnetostratigraphy of U-Pb-dated boreholes in Svalbard, Norway, implies that magnetochron M0r begins at 121.2 \pm 0.4 Ma (Zhang et al., 2019)

Spreading rate estimates change the date of the base Aptian to 121.5 Ma (Malinverno et al., 2012).

Berriasian through Aptian stage ages and stage durations

	GTS2012	GTS2020	s.d.
Albian	113.0	113.2	0.3
Aptian	126.3	121.4	0.6
Barremian	130.8	126.5	0.7
Hauterivian	133.9	132.6	0.6
Valanginian	140.2	137.7	0.5
Berriasian	145.0	143.1	0.6

-	GTS2012	GTS2020
Aptian	13.3	8.2
Barremian	4.5	5.1
Hauterivian	3.8	6.1
Valanginian	5.5	5.1
Berriasian	5.6	5.4

Endless Jurassic-Cretaceous boundary deliberations (No boundary definition !)

Nothing really happens at the J/K boundary !

First order eustatic sealevel is relatively low.

There is severe fossil endemism, leading to local stages and great confusion in correlation.

MFIBTYF

and geomag or stable isotopes cannot be seen in outcrops....

New Definition for the Jurassic-Cretaceous boundary

the only Period boundary without a ratified definition

Ammonitico Rosso type limestones across the J/Cr boundary Veliky Kamenets, W. Ukraine

Nothing really happens at the J/K boundary !

Cretaceous 'hothouse'

Las dos tetas

1.1