

wintershall dea

ENSEMBLE MODELLING LESSON LEARNED FROM OVER 2 YEARS – MARIA FIELD CASE STUDY

PETER KRONBERGER Stavanger – 7th December 2022

AGENDA

- Maria Overview
- Why ensemble based modelling
- 7 Learnings
- Summary & Conclusion

MARIA OVERVIEW

Location

- Norwegian Sea (Mid Norway), Halten Terrasse ٠
- Water depth: 300 m ٠

Description

- Jurassic Garn sandstone reservoir; 35 API oil ٠
- Surrounded by producing fields (same formation) ٠
- Sub-sea development with two templates (H & G) •

2017

2022

30%

20%

Key dates

- 2010 Discovery: • 2012
- Appraisal:
- On stream: ٠
- Phase 2 PDO: ٠

Ownership

- Wintershall Dea (Operator): 50% ٠
- Petoro: .
- Sval Energi: ٠

WHY ENSEMBLE BASED MODELLING?

- Sampling from the entire uncertainty span of each input parameter and not only one point
- Covers a combination of input parameters
- History matching
 - Reduces uncertainty consistently and systematically
 - Eventually improves the predictive power of the simulation model
 - Less biased compared to manual history matching
 - Conflicts in the model are naturally easier recognizable
- Highly multi-disciplinary modelling by nature

ENSEMBLE BASED MODELLING WORKFLOW

LEARNING #1 SENSE CHECKING

Use results for

- <u>Sense checking</u>
 - Does it make sense based on experience if a parameter tends to increase?
 - Could it cover just another uncertain parameter, which was possibly left out (structural uplift vs. permeability increase, ...)?
 - Is the geological concept preserved throughout the history matching
- Extracting sensitivities (indirectly)
 - What is the impact of the sealing layer on the possible planned scenarios

LEARNING #2 ENSEMBLE ≠ SCENARIOS

An ensemble is not equal to the range of its scenarios

- The range of a predicted outcome can create a comfort feeling and it should not be forgotten that the ensemble is build on a certain geological scenario.
- What is the impact of the geological scenario on the planned development concept?

LEARNING #3 OBJECTIVE FUNCTION

Setting up and cross-check the objective function

- Exclude wrong data points/ outliers (obvious)
- <u>Set up the correct tolerances</u>
 - Uncertainty in the measurement
 - Can give "weight" for a parameter is that wanted?
- How many data points to include?
 - As many as possible/ weekly/ monthly?
 - Can greatly affect the match quality
- Which parameters to include in objective function?
 - Measured bottom hole pressure (if available)
 - Water (production rate, cut, cumulative)?
 - The more parameters per well the more weight

LEARNING #4 NO DATA

- If there is no observed data from a certain zone/compartement, there will be no uncertainty reduction.
- How does this influence your planned development scenario?

LEARNING #5 REALITY

- Ideally: Run ensemble based modelling on all possible geological scenarios
 - BUT: Not practical due to limited time and resources
- Practically/Pragmatically: Investigate several scenarios and run ensemble based modelling on a few scenarios
- Define uncertainty in input parameters as «correctly» as possible
 - Never give the software more freedom than necessary
 - The software might compensate for one «missing uncertainty» by another «over-represented uncertainty»

LEARNING #6 COMMUNICATION

- Low, Mid, High ≠ P90, P50, P10
- Sum of P50s ≠ P50 of the sums
- Make sure you know how your output will be used and communicate the "boundary" of provided data
 - Facility Engineering Production Engineering Economics

LEARNING #7 IN-PLACE VOLUME DISTRIBUTION

Why is in-place distribution not getting larger?

- Introducing the large uncertainty on petrophysical properties and dynamic data alone will not necessarily lead to a wide in-place volume range even in the undrained zones/compartments.
 - Structural uncertainties, different contacts or geological models are needed to widen the range
- Cancellation effect between multiple zones sampled independently
 - Introduce dependencies between the zones

© Resoptima - Zendesk

- More cases to run; Time-consuming
- Crucial to perform proper QC
- Parametrization might be time-consuming; needs several iterations
- Important to cover all uncertain parameters, otherwise, the result can become misleading
- Based on assumptions (like every model)
- No valid assumptions \rightarrow no valid conclusions
- Crucial to define uncertainty in the input parameters "correctly"
- Sensitivity analysis: can't assign a certain response to a certain parameter

- You will always understand the model better using the entire posterior distribution, not just some point estimate derived from it
 - There is a lot of information about the uncertainty in the entire posterior distribution. We lose this information when we plug out a single parameter and then perform calculations with it. This loss of information leads to overconfidence.
- Overfitting two important principles:
 - Adding parameters (making the model more complex) nearly always improves fit of a model.
 - While more complex models fit the data better, they often predict the new data worse.